Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.037
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 31: 373-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407212

RESUMO

Mechanotransduction translates mechanical signals into biochemical signals. It is based on the soft-matter properties of biomolecules or membranes that deform in response to mechanical loads to trigger activation of biochemical reactions. The study of mechanotransductive processes in cell-structure organization has been initiated in vitro in many biological contexts, such as examining cells' response to substrate rigidity increases associated with tumor fibrosis and to blood flow pressure. In vivo, the study of mechanotransduction in regulating physiological processes has focused primarily on the context of embryogenesis, with an increasing number of examples demonstrating its importance for both differentiation and morphogenesis. The conservation across species of mechanical induction in early embryonic patterning now suggests that major animal transitions, such as mesoderm emergence, may have been based on mechanotransduction pathways. In adult animal tissues, permanent stiffness and tissue growth pressure contribute to tumorigenesis and appear to reactivate such conserved embryonic mechanosensitive pathways.


Assuntos
Carcinogênese/patologia , Mecanotransdução Celular/fisiologia , Morfogênese/fisiologia , Animais , Evolução Biológica , Desenvolvimento Embrionário/fisiologia , Humanos
2.
Physiol Rev ; 100(2): 695-724, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751165

RESUMO

Physical stimuli are essential for the function of eukaryotic cells, and changes in physical signals are important elements in normal tissue development as well as in disease initiation and progression. The complexity of physical stimuli and the cellular signals they initiate are as complex as those triggered by chemical signals. One of the most important, and the focus of this review, is the effect of substrate mechanical properties on cell structure and function. The past decade has produced a nearly exponentially increasing number of mechanobiological studies to define how substrate stiffness alters cell biology using both purified systems and intact tissues. Here we attempt to identify common features of mechanosensing in different systems while also highlighting the numerous informative exceptions to what in early studies appeared to be simple rules by which cells respond to mechanical stresses.


Assuntos
Microambiente Celular , Mecanotransdução Celular , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Forma Celular , Elasticidade , Humanos , Viscosidade
3.
Immunity ; 49(2): 326-341.e7, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30054204

RESUMO

The maintenance of appropriate arterial tone is critically important for normal physiological arterial function. However, the cellular and molecular mechanisms remain poorly defined. Here, we have shown that in the mouse aorta, resident macrophages prevented arterial stiffness and collagen deposition in the steady state. Using phenotyping, transcriptional profiling, and targeted deletion of Csf1r, we have demonstrated that these macrophages-which are a feature of blood vessels invested with smooth muscle cells (SMCs) in both mouse and human tissues-expressed the hyaluronan (HA) receptor LYVE-l. Furthermore, we have shown they possessed the unique ability to modulate collagen expression in SMCs by matrix metalloproteinase MMP-9-dependent proteolysis through engagement of LYVE-1 with the HA pericellular matrix of SMCs. Our study has unveiled a hitherto unknown homeostatic contribution of arterial LYVE-1+ macrophages through the control of collagen production by SMCs and has identified a function of LYVE-1 in leukocytes.


Assuntos
Colágeno/metabolismo , Glicoproteínas/metabolismo , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Rigidez Vascular/fisiologia , Animais , Aorta/fisiologia , Feminino , Glicoproteínas/genética , Humanos , Ácido Hialurônico/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética
4.
Proc Natl Acad Sci U S A ; 121(4): e2314884121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232279

RESUMO

Mechanical properties of biological tissues fundamentally underlie various biological processes and noncontact, local, and microscopic methods can provide fundamental insights. Here, we present an approach for quantifying the local mechanical properties of biological materials at the microscale, based on measuring the spectral shifts of the optical resonances in droplet microcavities. Specifically, the developed method allows for measurements of deformations in dye-doped oil droplets embedded in soft materials or biological tissues with an error of only 1 nm, which in turn enables measurements of anisotropic stress inside tissues as small as a few pN/µm2. Furthermore, by applying an external strain, Young's modulus can be measured in the range from 1 Pa to 35 kPa, which covers most human soft tissues. Using multiple droplet microcavities, our approach could enable mapping of stiffness and forces in inhomogeneous soft tissues and could also be applied to in vivo and single-cell experiments. The developed method can potentially lead to insights into the mechanics of biological tissues.


Assuntos
Vibração , Humanos , Módulo de Elasticidade
5.
Proc Natl Acad Sci U S A ; 121(31): e2403964121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042674

RESUMO

Conformationally fluctuating, globally compact macromolecules such as polymeric rings, single-chain nanoparticles, microgels, and many-arm stars display complex dynamic behaviors due to their rich topological structure and intermolecular organization. Synthetic rings are hybrid objects with conformations that display both ideal random walk and compact globular features, which can serve as models of genomic DNA. To date, emphasis has been placed on the effect of ring molecular weight on their unusual behaviors. Here, we combine simulations and a microscopic force-level theory to build a unified understanding for how key aspects of ring dynamics depend on different tunable molecular properties including backbone rigidity, monomer concentration, degree of traditional entanglement, and molecular weight. Our large-scale molecular dynamics simulations of ring melts with very different backbone stiffnesses reveal unanticipated behaviors which agree well with our generalized theory. This includes a universal master curve for center-of-mass diffusion constants as a function of molecular weight scaled by a chemistry and thermodynamic state-dependent critical molecular weight that generalizes the concept of an entanglement cross-over for linear chains. The key physics is how backbone rigidity and monomer concentration induced changes of the entanglement length, interring packing, degree of interpenetration, and liquid compressibility slow down space-time dynamic-force correlations on macromolecular scales. A power law decay of the center-of-mass diffusion constant with inverse molecular weight squared is the first consequence, followed by an ultraslow activated hopping transport regime. Our results set the stage to address slow dynamics and kinetic arrest in different families of compact synthetic and biological polymeric systems.

6.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108421

RESUMO

Cellular heterogeneity and extracellular matrix (ECM) stiffening have been shown to be drivers of breast cancer invasiveness. Here, we examine how stiffness-dependent crosstalk between cancer cells and mesenchymal stem cells (MSCs) within an evolving tumor microenvironment regulates cancer invasion. By analyzing previously published single-cell RNA sequencing datasets, we establish the existence of a subpopulation of cells in primary tumors, secondary sites and circulatory tumor cell clusters of highly aggressive triple-negative breast cancer (TNBC) that co-express MSC and cancer-associated fibroblast (CAF) markers. By using hydrogels with stiffnesses of 0.5, 2 and 5 kPa to mimic different stages of ECM stiffening, we show that conditioned medium from MDA-MB-231 TNBC cells cultured on 2 kPa gels, which mimic the pre-metastatic stroma, drives efficient MSC chemotaxis and induces stable differentiation of MSC-derived CAFs in a TGFß (TGFB1)- and contractility-dependent manner. In addition to enhancing cancer cell proliferation, MSC-derived CAFs on 2 kPa gels maximally boost local invasion and confer resistance to flow-induced shear stresses. Collectively, our results suggest that homing of MSCs at the pre-metastatic stage and their differentiation into CAFs actively drives breast cancer invasion and metastasis in TNBC.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Géis , Microambiente Tumoral/genética , Linhagem Celular Tumoral
7.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38345101

RESUMO

Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.


Assuntos
Matriz Extracelular , Membrana Nuclear , Humanos , Antígeno Ki-67/metabolismo , Matriz Extracelular/metabolismo , Mioblastos/metabolismo , Proliferação de Células
8.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563084

RESUMO

Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.


Assuntos
Adesões Focais , Proteínas Ativadoras de GTPase , Mecanotransdução Celular , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular , Retroalimentação Fisiológica , Adesões Focais/metabolismo , Adesões Focais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular/genética , Neovascularização Fisiológica , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(3): e2213837120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626552

RESUMO

Implants are widely used in medical applications and yet macrophage-mediated foreign body reactions caused by implants severely impact their therapeutic effects. Although the extensive use of multiple surface modifications has been introduced to provide some mitigation of fibrosis, little is known about how macrophages recognize the stiffness of the implant and thus influence cell behaviors. Here, we demonstrated that macrophage stiffness sensing leads to differential inflammatory activation, resulting in different degrees of fibrosis. The potential mechanism for macrophage stiffness sensing in the early adhesion stages tends to involve cell membrane deformations on substrates with different stiffnesses. Combining theory and experiments, we show that macrophages exert traction stress on the substrate through adhesion and altered membrane curvature, leading to the uneven distribution of the curvature-sensing protein Baiap2, resulting in cytoskeleton remodeling and inflammation inhibition. This study introduces a physical model feedback mechanism for early cellular stiffness sensing based on cell membrane deformation, offering perspectives for future material design and targeted therapies.


Assuntos
Reação a Corpo Estranho , Macrófagos , Humanos , Macrófagos/metabolismo , Reação a Corpo Estranho/metabolismo , Reação a Corpo Estranho/patologia , Inflamação/metabolismo , Membrana Celular , Fibrose
10.
Proc Natl Acad Sci U S A ; 120(43): e2304288120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844244

RESUMO

Integrin-dependent adhesion to the extracellular matrix (ECM) mediates mechanosensing and signaling in response to altered microenvironmental conditions. In order to provide tissue- and organ-specific cues, the ECM is composed of many different proteins that temper the mechanical properties and provide the necessary structural diversity. Despite most human tissues being soft, the prevailing view from predominantly in vitro studies is that increased stiffness triggers effective cell spreading and activation of mechanosensitive signaling pathways. To address the functional coupling of ECM composition and matrix rigidity on compliant substrates, we developed a matrix spot array system to screen cell phenotypes against different ECM mixtures on defined substrate stiffnesses at high resolution. We applied this system to both cancer and normal cells and surprisingly identified ECM mixtures that support stiffness-insensitive cell spreading on soft substrates. Employing the motor-clutch model to simulate cell adhesion on biochemically distinct soft substrates, with varying numbers of available ECM-integrin-cytoskeleton (clutch) connections, we identified conditions in which spreading would be supported on soft matrices. Combining simulations and experiments, we show that cell spreading on soft is supported by increased clutch engagement on specific ECM mixtures and even augmented by the partial inhibition of actomyosin contractility. Thus, "stiff-like" spreading on soft is determined by a balance of a cell's contractile and adhesive machinery. This provides a fundamental perspective for in vitro mechanobiology studies, identifying a mechanism through which cells spread, function, and signal effectively on soft substrates.


Assuntos
Matriz Extracelular , Integrinas , Humanos , Adesão Celular , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Citoesqueleto/metabolismo , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 120(26): e2219999120, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339218

RESUMO

This research focuses on performing ultrasound propagation measurements and micro-X-ray computed tomography (µXRCT) imaging on prestressed granular packings prepared with biphasic mixtures of monodisperse glass and rubber particles at different compositions/fractions. Ultrasound experiments employing piezoelectric transducers, mounted in an oedometric cell (complementing earlier triaxial cell experiments), are used to excite and detect longitudinal ultrasound waves through randomly prepared mixtures of monodisperse stiff/soft particles. While the fraction of the soft particles is increasing linearly from zero, the effective macroscopic stiffness of the granular packings transits nonlinearly and nonmonotonically toward the soft limit, remarkably via an interesting stiffer regime for small rubber fractions between 0.1 ≲ ν ≲ 0.2. The contact network of dense packings, as accessed from µXRCT, plays a key role in understanding this phenomenon, considering the structure of the network, the chain length, the grain contacts, and the particle coordination. While the maximum stiffness is due to surprisingly shortened chains, the sudden drop in elastic stiffness of the mixture packings, at ν ≈ 0.4, is associated with chains of particles that include both glass and rubber particles (soft chains); for ν ≲ 0.3, the dominant chains include only glass particles (hard chains). At the drop, ν ≈ 0.4, the coordination number of glass and rubber networks is approximately four and three, respectively, i.e., neither of the networks are jammed, and the chains need to include particles from another species to propagate information.

12.
Semin Cell Dev Biol ; 147: 58-69, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36732105

RESUMO

Scientific knowledge in the field of cell biology and mechanobiology heavily leans on cell-based in vitro experiments and models that favor the examination and comprehension of certain biological processes and occurrences across a variety of environments. Cell culture assays are an invaluable instrument for a vast spectrum of biomedical and biophysical investigations. The quality of experimental models in terms of simplicity, reproducibility, and combinability with other methods, and in particular the scale at which they depict cell fate in native tissues, is critical to advancing the knowledge of the comprehension of cell-cell and cell-matrix interactions in tissues and organs. Typically, in vitro models are centered on the experimental tinkering of mammalian cells, most often cultured as monolayers on planar, two-dimensional (2D) materials. Notwithstanding the significant advances and numerous findings that have been accomplished with flat biology models, their usefulness for generating further new biological understanding is constrained because the simple 2D setting does not reproduce the physiological response of cells in natural living tissues. In addition, the co-culture systems in a 2D stetting weakly mirror their natural environment of tissues and organs. Significant advances in 3D cell biology and matrix engineering have resulted in the creation and establishment of a new type of cell culture shapes that more accurately represents the in vivo microenvironment and allows cells and their interactions to be analyzed in a biomimetic approach. Contemporary biomedical and biophysical science has novel advances in technology that permit the design of more challenging and resilient in vitro models for tissue engineering, with a particular focus on scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips, which cover the purposes of co-cultures. Even these complex systems must be kept as simplified as possible in order to grasp a particular section of physiology too very precisely. In particular, it is highly appreciated that they bridge the space between conventional animal research and human (patho)physiology. In this review, the recent progress in 3D biomimetic culturation is presented with a special focus on co-cultures, with an emphasis on the technological building blocks and endothelium-based co-culture models in cancer research that are available for the development of more physiologically relevant in vitro models of human tissues under normal and diseased conditions. Through applications and samples of various physiological and disease models, it is possible to identify the frontiers and future engagement issues that will have to be tackled to integrate synthetic biomimetic culture systems far more successfully into biomedical and biophysical investigations.


Assuntos
Técnicas de Cultura de Células , Engenharia Tecidual , Animais , Humanos , Técnicas de Cocultura , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos , Células Endoteliais , Mamíferos
13.
Circulation ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166323

RESUMO

BACKGROUND: Sedentary behavior (SB) is observationally associated with cardiovascular disease risk. However, randomized clinical trials testing causation are limited. We hypothesized that reducing SB would decrease blood pressure (BP) and pulse wave velocity (PWV) in sedentary adults. METHODS: This parallel-arm, 3-month randomized clinical trial recruited desk workers, age 18 to 65 years, with systolic BP 120 to 159 or diastolic BP (DBP) 80 to 99 mm Hg, off antihypertensive medications, and reporting <150 min/wk of moderate to vigorous intensity physical activity. Participants were randomized to a SB reduction intervention or a no-contact control group. The intervention sought to replace 2 to 4 h/d of SB with standing and stepping through coaching, a wrist-worn activity prompter, and a sit-stand desk. SB and physical activity were measured with a thigh-worn accelerometer and quantified during all waking hours and separately during work and nonwork times. Clinic-based resting systolic BP (primary outcome) and DBP, 24-hour ambulatory BP, and PWV were assessed by blinded technicians at baseline and 3 months. RESULTS: Participants (n=271) had a mean age of 45 years and systolic BP/DBP 129/83 mm Hg. Compared with controls, intervention participants had reduced SB (-1.15±0.17 h/d), increased standing (0.94±0.14 h/d), and increased stepping (5.4±2.4 min/d; all P<0.05). SB and activity changes mainly occurred during work time and were below the goal. The intervention did not reduce BP or PWV in the intervention group compared with controls. Between-group differences in resting systolic BP and DBP changes were -0.22±0.90 (P=0.808) and 0.13±0.61 mm Hg (P=0.827), respectively. The findings were similarly null for ambulatory BP and PWV. Decreases in work-time SB were associated with favorable reductions in resting DBP (r=0.15, P=0.017). Contrary to our hypotheses, reductions in work-time SB (r=-0.19, P=0.006) and increases in work-time standing (r=0.17, P=0.011) were associated with unfavorable increases in carotid-femoral PWV. As expected, increases in non-work-time standing were favorably associated with carotid-femoral PWV (r=-0.14, P=0.038). CONCLUSIONS: A 3-month intervention that decreased SB and increased standing by ≈1 hour during the work day was not effective for reducing BP. Future directions include examining effects of interventions reducing SB through activity other than work-time standing and clarifying association between standing and PWV in opposite directions for work and nonwork time. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03307343.

14.
Circulation ; 149(2): 124-134, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38031887

RESUMO

BACKGROUND: Primary aldosteronism, characterized by overt renin-independent aldosterone production, is a common but underrecognized form of hypertension and cardiovascular disease. Growing evidence suggests that milder and subclinical forms of primary aldosteronism are highly prevalent, yet their contribution to cardiovascular disease is not well characterized. METHODS: This prospective study included 1284 participants between the ages of 40 and 69 years from the randomly sampled population-based CARTaGENE cohort (Québec, Canada). Regression models were used to analyze associations of aldosterone, renin, and the aldosterone-to-renin ratio with the following measures of cardiovascular health: arterial stiffness, assessed by central blood pressure (BP) and pulse wave velocity; adverse cardiac remodeling, captured by cardiac magnetic resonance imaging, including indexed maximum left atrial volume, left ventricular mass index, left ventricular remodeling index, and left ventricular hypertrophy; and incident hypertension. RESULTS: The mean (SD) age of participants was 54 (8) years and 51% were men. The mean (SD) systolic and diastolic BP were 123 (15) and 72 (10) mm Hg, respectively. At baseline, 736 participants (57%) had normal BP and 548 (43%) had hypertension. Higher aldosterone-to-renin ratio, indicative of renin-independent aldosteronism (ie, subclinical primary aldosteronism), was associated with increased arterial stiffness, including increased central BP and pulse wave velocity, along with adverse cardiac remodeling, including increased indexed maximum left atrial volume, left ventricular mass index, and left ventricular remodeling index (all P<0.05). Higher aldosterone-to-renin ratio was also associated with higher odds of left ventricular hypertrophy (odds ratio, 1.32 [95% CI, 1.002-1.73]) and higher odds of developing incident hypertension (odds ratio, 1.29 [95% CI, 1.03-1.62]). All the associations were consistent when assessing participants with normal BP in isolation and were independent of brachial BP. CONCLUSIONS: Independent of brachial BP, a biochemical phenotype of subclinical primary aldosteronism is negatively associated with cardiovascular health, including greater arterial stiffness, adverse cardiac remodeling, and incident hypertension.


Assuntos
Doenças Cardiovasculares , Hiperaldosteronismo , Hipertensão , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Aldosterona , Remodelação Ventricular , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/epidemiologia , Hipertrofia Ventricular Esquerda/complicações , Renina , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/complicações , Estudos Prospectivos , Estudos de Coortes , Análise de Onda de Pulso , Hipertensão/complicações , Hiperaldosteronismo/complicações , Hiperaldosteronismo/epidemiologia , Átrios do Coração
15.
Circulation ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101201

RESUMO

BACKGROUND: Systemic arterial compliance and venous capacitance are typically impaired in patients with heart failure with preserved ejection fraction (HFpEF), contributing to hemodynamic congestion with stress. Sodium-glucose cotransporter-2 inhibitors reduce hemodynamic congestion and improve clinical outcomes in patients with HFpEF, but the mechanisms remain unclear. This study tested the hypothesis that Dapagliflozin would improve systemic arterial compliance and venous capacitance during exercise in patients with HFpEF. METHODS: In this secondary analysis from the Cardiac and Metabolic Effects of Dapagliflozin in Heart Failure With Preserved Ejection Fraction Trial, 37 patients with HFpEF (mean age 68 ± 9 years, women 65%) underwent invasive hemodynamic exercise testing with simultaneous echocardiography at baseline and following treatment for 24 weeks with Dapagliflozin or placebo. Radial artery pressure (BP) was measured continuously using a fluid-filled catheter with transformation to aortic pressure, central hemodynamics were measured using high-fidelity micromanometers, and stressed blood volume was estimated from hemodynamic indices fit to a comprehensive cardiovascular model. RESULTS: There was no statistically significant effect of Dapagliflozin on resting BP, but Dapagliflozin reduced systolic BP during peak exercise (estimated treatment difference [ETD], -18.8 mm Hg [95% CI, -33.9 to -3.7] P=0.016). Reduction in BP was related to improved exertional total arterial compliance (ETD, 0.06 mL/mm Hg/m2 [95% CI, 0.003-0.11] P=0.039) and aortic root characteristic impedance (ETD, -2.6 mm Hg/mL*sec [95% CI: -5.1 to -0.03] P=0.048), with no significant effect on systemic vascular resistance. Dapagliflozin reduced estimated stressed blood volume at rest and during peak exercise (ETD, -292 mm Hg [95% CI, -530 to -53] P=0.018), and improved venous capacitance evidenced by a decline in ratio of estimated stressed blood volume to total blood volume (ETD, -7.3% [95% CI, -13.3 to -1.3] P=0.020). Each of these effects of Dapagliflozin at peak exercise were also observed during matched 20W exercise intensity. Improvements in total arterial compliance and estimated stressed blood volume were correlated with decreases in body weight, and reduction in systolic BP with treatment was correlated with the change in estimated stressed blood volume during exercise (r=0.40, P=0.019). Decreases in BP were correlated with reduction in pulmonary capillary wedge pressure during exercise (r=0.56, P<0.001). CONCLUSIONS: In patients with HFpEF, treatment with Dapagliflozin improved systemic arterial compliance and venous capacitance during exercise, while reducing aortic characteristic impedance, suggesting a reduction in arterial wall stiffness. These vascular effects may partially explain the clinical benefits with sodium-glucose cotransporter-2 inhibitors in HFpEF. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04730947.

16.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718783

RESUMO

Notch signaling is critical for many developmental and disease-related processes. It is widely accepted that Notch has a mechanotransduction module that regulates receptor cleavage. However, the role of biomechanical properties of the cellular environment in Notch signaling in general is still poorly understood. During angiogenesis, differentiation of endothelial cells into tip and stalk cells is regulated by Notch signaling, and remodeling of the extracellular matrix occurs. We investigated the influence of substrate stiffness on the Notch signaling pathway in endothelial cells. Using stiffness-tuned polydimethylsiloxane (PDMS) substrates, we show that activity of the Notch signaling pathway inversely correlates with a physiologically relevant range of substrate stiffness (i.e. increased Notch signaling activity on softer substrates). Trans-endocytosis of the Notch extracellular domain, but not the overall endocytosis, is regulated by substrate stiffness, and integrin cell-matrix connections are both stiffness dependent and influenced by Notch signaling. We conclude that mechanotransduction of Notch activation is modulated by substrate stiffness, highlighting the role of substrate rigidity as an important cue for signaling. This might have implications in pathological situations associated with stiffening of the extracellular matrix, such as tumor growth.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Neovascularização Fisiológica/fisiologia
17.
J Cell Sci ; 136(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37732478

RESUMO

The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.


Assuntos
Citoesqueleto , Filamentos Intermediários , Camundongos , Humanos , Animais , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Complexo de Golgi/metabolismo , Mamíferos/metabolismo
18.
FASEB J ; 38(13): e23785, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949120

RESUMO

Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple-negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple-negative breast cancer extravasation, as these mechanisms may be potential new targets for anti-metastasis therapy.


Assuntos
Glicocálix , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Glicocálix/metabolismo , Glicocálix/patologia , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Microambiente Tumoral/fisiologia , Animais , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Metástase Neoplásica , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia
19.
Circ Res ; 132(2): 167-181, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36575982

RESUMO

BACKGROUND: Dysbiosis of gut microbiota plays a pivotal role in vascular dysfunction and microbial diversity was reported to be inversely correlated with arterial stiffness. However, the causal role of gut microbiota in the progression of arterial stiffness and the specific species along with the molecular mechanisms underlying this change remain largely unknown. METHODS: Participants with elevated arterial stiffness and normal controls free of medication were matched for age and sex. The microbial composition and metabolic capacities between the 2 groups were compared with the integration of metagenomics and metabolomics. Subsequently, Ang II (angiotensin II)-induced and humanized mouse model were employed to evaluate the protective effect of Flavonifractor plautii (F plautii) and its main effector cis-aconitic acid. RESULTS: Human fecal metagenomic sequencing revealed a significantly high abundance and centrality of F plautii in normal controls, which was absent in the microbial community of subjects with elevated arterial stiffness. Moreover, blood pressure only mediated part of the effect of F plautii on lower arterial stiffness. The microbiome of normal controls exhibited an enhanced capacity for glycolysis and polysaccharide degradation, whereas, those of subjects with increased arterial stiffness were characterized by increased biosynthesis of fatty acids and aromatic amino acids. Integrative analysis with metabolomics profiling further suggested that increased cis-aconitic acid served as the main effector for the protective effect of F plautii against arterial stiffness. Replenishment with F plautii and cis-aconitic acid improved elastic fiber network and reversed increased pulse wave velocity through the suppression of MMP-2 (matrix metalloproteinase-2) and inhibition of MCP-1 (monocyte chemoattractant protein-1) and NF-κB (nuclear factor kappa-B) activation in both Ang II-induced and humanized model of arterial stiffness. CONCLUSIONS: Our translational study identifies a novel link between F plautii and arterial function and raises the possibility of sustaining vascular health by targeting gut microbiota.


Assuntos
Metaloproteinase 2 da Matriz , Rigidez Vascular , Animais , Camundongos , Humanos , Rigidez Vascular/fisiologia , Análise de Onda de Pulso , Ácido Aconítico/farmacologia
20.
Circ Res ; 132(1): 87-105, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36475898

RESUMO

BACKGROUND: The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS: We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS: We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS: These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner.


Assuntos
Via de Sinalização Hippo , Histidina , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Colágeno , Colágeno Tipo I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA