Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Psychiatry ; 23(1): 847, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974113

RESUMO

BACKGROUND: Anxious depression, which is a common subtype of major depressive disorder, has distinct clinical features from nonanxious depression. However, little is known about the neurobiological characteristics of anxious depression. In this study, we explored resting-state regional brain activity changes between anxious depression and nonanxious depression. METHOD: Resting-state functional magnetic resonance (rs-fMRI) imaging data were collected from 60 patients with anxious depression, 38 patients with nonanxious depression, and 60 matched healthy controls (HCs). One-way analysis of variance was performed to compare the whole-brain fractional amplitude of low-frequency fluctuation (fALFF) in the three groups. The correlation between the fALFF values and the clinical measures was examined. RESULTS: Compared with those of HCs, the fALFF values in the left superior temporal gyrus (STG) in patients with anxious depression were significantly increased, while the fALFF values in the left middle temporal gyrus (MTG), left STG, and right STG in patients with nonanxious depression were significantly increased. Patients with anxious depression showed reduced fALFF values in the right STG compared with patients with nonanxious depression (p < 0.001, corrected). Within the anxious depression group, fALFF value in the right STG was positively correlated with the cognitive disturbance score (r = 0.36, p = 0.005 corrected). CONCLUSION: The bilateral STG and left MTG, which are related to the default mode network, appear to be key brain regions in nonanxious depression, while the right STG plays an essential role in the neuropathological mechanism of anxious depression.


Assuntos
Depressão , Transtorno Depressivo Maior , Humanos , Depressão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo , Lobo Temporal/diagnóstico por imagem
2.
Alzheimers Dement ; 14(12): 1580-1588, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29550519

RESUMO

INTRODUCTION: Alzheimer's disease is a neurodegenerative disorder that is hypothesized to involve epigenetic dysregulation of gene expression in the brain. METHODS: We performed an epigenome-wide association study to identify differential DNA methylation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from 147 individuals, replicating our findings in two independent data sets (N = 117 and 740). RESULTS: We identify elevated DNA methylation associated with neuropathology across a 48-kb region spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three cohorts (P = 3.11 × 10-18). DISCUSSION: We present robust evidence for elevated DNA methylation associated with Alzheimer's disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the growing evidence highlighting a role for epigenetic variation in Alzheimer's disease, implicating the HOX gene family as a target for future investigation.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metilação de DNA , Proteínas de Homeodomínio/genética , Córtex Pré-Frontal/patologia , Lobo Temporal/patologia , Ilhas de CpG , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Família Multigênica
3.
Front Neurosci ; 17: 1209398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928727

RESUMO

Enjoying music consistently engages key structures of the neural auditory and reward systems such as the right superior temporal gyrus (R STG) and ventral striatum (VS). Expectations seem to play a central role in this effect, as preferences reliably vary according to listeners' uncertainty about the musical future and surprise about the musical past. Accordingly, VS activity reflects the pleasure of musical surprise, and exhibits stronger correlations with R STG activity as pleasure grows. Yet the reward value of musical surprise - and thus the reason for these surprises engaging the reward system - remains an open question. Recent models of predictive neural processing and learning suggest that forming, testing, and updating hypotheses about one's environment may be intrinsically rewarding, and that the constantly evolving structure of musical patterns could provide ample opportunity for this procedure. Consistent with these accounts, our group previously found that listeners tend to prefer melodic excerpts taken from real music when it either validates their uncertain melodic predictions (i.e., is high in uncertainty and low in surprise) or when it challenges their highly confident ones (i.e., is low in uncertainty and high in surprise). An independent research group (Cheung et al., 2019) replicated these results with musical chord sequences, and identified their fMRI correlates in the STG, amygdala, and hippocampus but not the VS, raising new questions about the neural mechanisms of musical pleasure that the present study seeks to address. Here, we assessed concurrent liking ratings and hemodynamic fMRI signals as 24 participants listened to 50 naturalistic, real-world musical excerpts that varied across wide spectra of computationally modeled uncertainty and surprise. As in previous studies, liking ratings exhibited an interaction between uncertainty and surprise, with the strongest preferences for high uncertainty/low surprise and low uncertainty/high surprise. FMRI results also replicated previous findings, with music liking effects in the R STG and VS. Furthermore, we identify interactions between uncertainty and surprise on the one hand, and liking and surprise on the other, in VS activity. Altogether, these results provide important support for the hypothesized role of the VS in deriving pleasure from learning about musical structure.

4.
Brain Lang ; 240: 105266, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37105004

RESUMO

Internal forward models hypothesize functional links between motor and sensory systems for predicting the consequences of actions. Recently, the cascaded theory proposes that somatosensory estimation in the inferior parietal lobe (IPL) can be a relay computational structure, converting motor signals into predictions of auditory consequences in a serial processing manner during speech production. The study used fMRI with functional connectivity (FC) analyses to investigate the proposed cascaded processes using three speech tasks: overt articulation (OA), silent articulation (SA) and imagined articulation (IA). The FC results showed that connectivity between aIPL and STG was increased in OA compared with SA, suggesting that the relationship between somatosensory and auditory estimations can be modulated by speech tasks. Moreover, stronger connectivity between IFGoper and pIPL, and between pIPL and STG were observed in SA and IA compared with OA. These results are consistent with a cascaded process in the internal forward models.


Assuntos
Percepção da Fala , Fala , Humanos , Mapeamento Encefálico/métodos , Lobo Temporal , Lobo Parietal/diagnóstico por imagem
5.
Front Aging Neurosci ; 14: 870998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651530

RESUMO

Purpose: Alterations in speech and voice are among the most common symptoms in Parkinson's disease (PD), often resulting in motor speech disorders such as hypokinetic dysarthria. We investigated dysarthria, verbal fluency, executive functions, and global cognitive function in relation to structural and resting-state brain changes in people with PD. Methods: Participants with mild-moderate PD (n = 83) were recruited within a randomized controlled trial and divided into groups with varying degrees of dysarthria: no dysarthria (noDPD), mild dysarthria (mildDPD), moderate dysarthria (modDPD), and also combined mildDPD and modDPD into one group (totDPD). Voice sound level and dysphonia, verbal fluency, motor symptoms, executive functions, disease severity, global cognition, and neuroimaging were compared between groups. Gray matter volume and intensity of spontaneous brain activity were analyzed. Additionally, regressions between behavioral and neuroimaging data were performed. Results: The groups differed significantly in mean voice sound level, dysphonia, and motor symptom severity. Comparing different severity levels of dysarthria to noDPD, groups differed focally in resting-state activity, but not in brain structure. In totDPD, lower scores on semantic verbal fluency, a composite score of executive functions, and global cognition correlated with lower superior temporal gyrus volume. Conclusion: This study shows that severity of dysarthria may be related to underlying structural and resting-state brain alterations in PD as well as behavioral changes. Further, the superior temporal gyrus may play an important role in executive functions, language, and global cognition in people with PD and dysarthria.

6.
Front Aging Neurosci ; 14: 1001447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329872

RESUMO

Facial emotion recognition plays an important role in social functioning. Patients with late-life depression (LLD) often have abnormal facial emotion recognition. Mindfulness-based cognitive therapy (MBCT) is beneficial in treating depression. This study examined whether MBCT can act as an effective augmentation of antidepressants and improve facial emotion recognition in patients with LLD and its underlying neural mechanism. Patients with LLD were randomized into two groups (n = 30 per group). The MBCT group received an eight-week MBCT in conjunction with stable medication treatment. The other group was treated as usual (TAU group) with stable medication treatment. The positive affect (PA) scale, negative affect (NA) scale, and facial emotion recognition task with an fMRI scan were performed before and after the trial. After eight weeks of treatment, the repeated ANOVA showed that the PA score in the MBCT group significantly increased [F (1,54) = 13.31, p = 0.001], but did not change significantly [F (1,54) = 0.58, p = 0.449] in the TAU group. The NA scores decreased significantly in both the MBCT group [F (1,54) = 19.01, p < 0.001] and the TAU group [F (1,54) = 16.16, p < 0.001]. Patients showed an increase in recognition accuracy and speed of angry and sad faces after 8 weeks of MBCT. No improvement was detected in the TAU group after treatment. A significant interaction effect was found in the change of activation of the left superior temporal gyrus (L-STG) to negative emotional expression between time and groups. Furthermore, a decrease in activation of L-STG to negative emotional expression was positively correlated with the increase in PA score. The MBCT is beneficial for improving affect status and facial emotion recognition in patients with LLD, and the L-STG is involved in this process.

7.
Front Neurosci ; 13: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837823

RESUMO

Neural keyword spotting could form the basis of a speech brain-computer-interface for menu-navigation if it can be done with low latency and high specificity comparable to the "wake-word" functionality of modern voice-activated AI assistant technologies. This study investigated neural keyword spotting using motor representations of speech via invasively-recorded electrocorticographic signals as a proof-of-concept. Neural matched filters were created from monosyllabic consonant-vowel utterances: one keyword utterance, and 11 similar non-keyword utterances. These filters were used in an analog to the acoustic keyword spotting problem, applied for the first time to neural data. The filter templates were cross-correlated with the neural signal, capturing temporal dynamics of neural activation across cortical sites. Neural vocal activity detection (VAD) was used to identify utterance times and a discriminative classifier was used to determine if these utterances were the keyword or non-keyword speech. Model performance appeared to be highly related to electrode placement and spatial density. Vowel height (/a/ vs /i/) was poorly discriminated in recordings from sensorimotor cortex, but was highly discriminable using neural features from superior temporal gyrus during self-monitoring. The best performing neural keyword detection (5 keyword detections with two false-positives across 60 utterances) and neural VAD (100% sensitivity, ~1 false detection per 10 utterances) came from high-density (2 mm electrode diameter and 5 mm pitch) recordings from ventral sensorimotor cortex, suggesting the spatial fidelity and extent of high-density ECoG arrays may be sufficient for the purpose of speech brain-computer-interfaces.

8.
Neuropsychologia ; 70: 214-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25701795

RESUMO

The present study explores the functional neuroanatomy of the phonological production system in an Italian aphasic patient (SP) who developed conduction aphasia of the reproduction type following brain surgery. SP presented with two peculiar features: (1) his lesion was localized in the superior temporal gyrus, just posterior to the primary auditory cortex and anterior/inferior to and neighboring the Sylvian parietal temporal (Spt) area, and (2) he presented with severely impaired repetition and spelling from dictation of words and pseudowords but spared reading-aloud of words and pseudowords. Structural, functional, fiber tracking and intraoperative findings were combined to analyze SP's pattern of performance within a widely used sensorimotor control scheme of speech production. We found a dissociation between an interrupted sector of the arcuate fasciculus terminating in STG, known to be involved in phonological processing, and a part of the arcuate fasciculus terminating in MTG, which is held to be involved in lexical-semantic processing. We argue that this phonological deficit should be interpreted as a disorder of the feedback system, in particular of the auditory and somatosensory target maps, which are assumed to be located along the Spt area. In patient SP, the spared part of the left arcuate fasciculus originating in MTG may support an unimpaired reading performance, while the damaged part of the left arcuate fasciculus originating in STG may be responsible for his impaired repetition and spelling from dictation.


Assuntos
Afasia/patologia , Afasia/fisiopatologia , Mapeamento Encefálico , Idioma , Leitura , Adulto , Afasia/cirurgia , Imagem de Difusão por Ressonância Magnética , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Itália , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Testes Neuropsicológicos , Procedimentos Neurocirúrgicos , Oxigênio/sangue , Lobo Temporal/irrigação sanguínea , Lobo Temporal/patologia , Vocabulário
9.
Brain Res ; 1620: 169-76, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25979311

RESUMO

The purpose of this study was to conduct a preliminary investigation of the white matter characteristics in patients with psychogenic non-epileptic seizures (PNES). Diffusion Tensor Imaging (DTI) data were collected at 3T in 16 patients with PNES and 16 age- and sex-matched healthy controls (HC). All patients with PNES had their diagnosis confirmed via video/EEG monitoring; HCs had no comorbid neurological or psychiatric conditions. DTI indices including fractional anisotropy (FA), and mean diffusivity (MD) were calculated and compared between patients with PNES and HCs using Tract-Based Spatial Statistics (TBSS). Significantly higher FA values were observed in patients with PNES in the left corona radiata, left internal and external capsules, left superior temporal gyrus, as well as left uncinate fasciculus (UF) (P<0.05; corrected for multiple comparisons). There was no significant change in other indices between patients with PNES and HCs. These findings suggest that patients with PNES have significantly altered white matter structural connectivity when compared to age- and sex-matched HCs. These abnormalities are present in left hemispheric regions associated with emotion regulation and motor pathways. While the relationship between the pathophysiology of PNES and these abnormalities is not entirely clear, this work provides an initial basis to guide future prospective studies.


Assuntos
Encéfalo/patologia , Transtornos Psicofisiológicos/patologia , Convulsões/patologia , Substância Branca/patologia , Adulto , Anisotropia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA