RESUMO
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels should be extremely important to control the stress levels, and for this reason, it shows important medical applications. The common analytical methods (HPLC, GC-MS) cannot be used in real life, due to the bulky size of the instruments and the necessity of specialized personnel. Molecular probes solve these problems due to their fast and easy use. The synthesis of new fluorescent rhodamine probes, able to interact by non-covalent interactions with cortisol, the recognition properties in solution as well as in solid state by Strip Test, using a smartphone as detector, are here reported. DFT calculations and FT-IR measurements suggest the formation of supramolecular complexes through hydrogen bonds as main non-covalent interaction. The present study represents one of the first sensor, based on synthetical chemical receptors, able to detect cortisol in a linear range from 1â mM to 1â pM, based on non-covalent molecular recognition and paves the way to the realization of practical point-of-care device for the monitoring of cortisol in real live.
Assuntos
Corantes Fluorescentes , Hidrocortisona , Rodaminas , Smartphone , Hidrocortisona/química , Hidrocortisona/análise , Hidrocortisona/metabolismo , Corantes Fluorescentes/química , Rodaminas/química , Humanos , Ligação de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas Biossensoriais/métodosRESUMO
In this work, we present the synthesis of a novel Zn-Salphen complex containing an allyl group, which was used as building block in the further preparation of a new family of functional terpolymers. These polymers were obtained through radical co-polymerization with methyl metacrylate (MMA) and n-butyl acrylate (nBuA) in different ratios. The supramolecular recognition behavior of each polymer was evaluated via potentiometric measurements against selected anions in aqueous media. Interestingly, this proof of concept study shows that these systems were selective against only fluoride (F-) or both, fluoride and acetate (OAc-), by tailoring the relative content of Zn-Salphen monomer, thus making them a promising starting point for modular design of chemical sensors through straightforward synthetic approaches.
Assuntos
Resinas Acrílicas/química , Fenilenodiaminas/química , Polímeros/química , Zinco/química , Estrutura Molecular , Polimerização , Polímeros/síntese química , Polimetil Metacrilato/químicaRESUMO
In the face of diversified analytes, it is a great challenge and infeasible task to design and synthesize corresponding macrocyclic hosts to realize the ideal supramolecular sensing. Herein, we proposed a novel supramolecular sensing strategy, guest adaptative assay (GAA), in which analyte was quantitatively transformed under mild conditions to perfectly adapt to macrocyclic host. As a health-threatening "landmine" in cereals, aflatoxins were converted by the aid of alkali hydrolysis to satisfactorily obtain aflatoxins transformants in ionic state, resulting in sensitive response by the guanidinocalix[5]areneâ¢fluorescein reporter pair. Surprisingly, the established strategy not only exhibited effective practicality in screening out high-risk cereals contaminated with aflatoxins, but also relieved the laborious task of macrocycle design and screening in supramolecular sensing.
Assuntos
Aflatoxinas , Aflatoxinas/análise , Grão Comestível/químicaRESUMO
The prevalence of metabolic disorders has been found to increase concomitantly with alternations in habitual diet and lifestyle, indicating the importance of metabolic health monitoring for early warning of high-risk status and suggesting effective intervention strategies. Hippuric acid (HA), as one of the most abundant metabolites from the gut microbiota, holds potential as a regulator of metabolic health. Accordingly, it is imperative to establish an efficient, sensitive, and affordable method for large-scale population monitoring, revealing the association between HA level and metabolic disorders. Upon systematic screening of macrocycleâ¢dye reporter pair, a supramolecular architecture (guanidinomethyl-modified calix[5]arene, GMC5A) was employed to sense urinary HA by employing fluorescein (Fl), whose complexation behavior was demonstrated by theoretical calculations, accomplishing quantification of HA in urine from 249 volunteers in the range of 0.10 mM and 10.93 mM. Excitedly, by restricted cubic spline, urinary HA concentration was found to have a significantly negative correlation with the risk of metabolic disorders when it exceeded 0.76 mM, suggesting the importance of dietary habits, especially the consumption of fruits, coffee, and tea, which was unveiled from a simple questionnaire survey. In this study, we accomplished a high throughput and sensitive detection of urinary HA based on supramolecular sensing with the GMC5Aâ¢Fl reporter pair, which sheds light on the rapid quantification of urinary HA as an indicator of metabolic health status and early intervention by balancing the daily diet.
Assuntos
Biomarcadores , Hipuratos , Hipuratos/urina , Humanos , Biomarcadores/urina , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Corantes Fluorescentes/químicaRESUMO
A supramolecular platform based on self-assembled monolayers (SAMs) has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III)-EDTA complex was bound to ß-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III)-EDTA conjugate and naphthalene ß-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP) and pyrophosphate, as well as dipicolinic acid (DPA) which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with µM and nM detection sensitivity for ATP and DPA, respectively.
Assuntos
Ânions/química , Técnicas Analíticas Microfluídicas/métodos , Fosfatos/química , Trifosfato de Adenosina/análise , Bacillus anthracis/isolamento & purificação , Biomarcadores/análise , Difosfatos/análise , Luminescência , Procedimentos Analíticos em Microchip , Ácidos Picolínicos/análise , beta-CiclodextrinasRESUMO
Screening inhibitors of flavin monooxygenase 3 (FMO3) is very important for treating trimethylamine N-oxide (TMAO) derived thrombotic diseases. Herein, focusing on Xuefu Zhuyu decoction (XFZYD) as a Chinese traditional medicine with antithrombotic efficacy, a facile and label-free fluorescence strategy was developed for evaluating the influence of the bioactive ingredients in XFZYD on FMO3 activity through indicator displacement assay. To this end, the optimized supramolecular host-guest (p-sulfonatocalix[4]arene-oxazine 1) reporter pair and FMO3 catalytic system were exploited to determine the influence of the bioactive compounds in XFZYD on the conversion from TMA to TMAO. From the nine compounds tested, naringin, paeoniflorin, ß-ecdysterone, 18ß-glycyrrhizic acid, amygdalin, albiflorin, and saikosaponin A downregulated FMO3 activity and reduced TMAO biosynthesis. Moreover, molecular docking was successfully applied to simulate the optimal conformation of a receptor-ligand complex between FMO3 and all tested compounds except for ß-ecdysterone. Therefore, this approach provides a novel and promising strategy for screening FMO3 inhibitors from Chinese traditional medicine by supramolecular sensing.
Assuntos
Técnicas Biossensoriais , Trombose , Humanos , Metilaminas , Simulação de Acoplamento Molecular , OxigenasesRESUMO
The development of sensitive and selective tools for the detection and quantification of biomarkers is important in the diagnosis and treatment of clinical diseases. Spermine (SP) and spermidine (SPD) act as biomarkers for early-stage diagnosis of cancer in humans as their increased levels in urine are indicative of abnormal biological processes associated with this fatal disease. In this study, we introduced a strategy for solid-supported amplification of the effective aggregation-induced-emission (AIE) effect of a water-soluble tetraphenylethylene (TPE)-based probe in developing a supramolecular sensing platform for the rapid, sensitive, and selective detection of SP and SPD in water. The nonemissive TPE derivative (TPEHP) forms a less emissive conjugate with hydroxyl cucurbit[6]uril (CB[6]OH) in water, which undergoes several-fold enhancement of effective emission upon electrostatic interaction with the solid surface of hydroxyapatite nanoparticles (HAp NPs), dispersed in the aqueous media. The corresponding three-component supramolecular assembly disrupts by the intrusion of SP and SPD in the CB[6] portal because of the stronger binding ability with CB[6], resulting in a turn-off fluorescence sensor for SP and SPD with enhanced sensitivity. The assembly-disassembly-based sensing mechanism was thoroughly demonstrated by carrying out isothermal titration calorimetry (ITC), spectroscopic, and microscopic experiments. The sensing system showed low limits of detection (LODs) of 1.4 × 10-8 and 3.6 × 10-8 M for SP and SPD, respectively, which are well below the required range for the early diagnosis of cancer. Besides, a good linear relationship was obtained for both SP and SPD. Nominal interference from various metal ions, anions, common chemicals, amino acids, and other biogenic amines makes this sensing platform suitable for the real-time, low-level measurement of spermine (and spermidine) in human urinary and blood samples.