Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(21): e2309956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38145329

RESUMO

Lateral-flow assay (LFA) is one of the most commonly used detection technologies, in which the chromatographic membranes are currently used as the lateral-flow membrane (e.g., nitrocellulose membrane, NC Mem). However, several disadvantages of existing chromatographic membranes limit the performance of LFA, including relatively low flow velocity of sample solution and relatively more residuals of sample on membrane, which increase detection time and detection noise. Herein, a surface structure membrane (SS Mem) is proposed, which enables fast self-transport of water with a convection manner and realizes low residuals of sample on membrane surface after the flow. On SS Mem, the flow velocity of water is 7.1-fold higher, and the residuals of sample are decreased by 60-67%, comparing those in NC Mem. SS Mem is used as lateral-flow membrane to prepare lateral-flow strips of nanogold LFA and fluorescence LFA for rapid detection of SARS CoV-2 nucleocapsid protein. These LFAs require 210 s per detection, with limits of detection of 3.98 pg mL-1 and 53.3 fg mL-1, sensitivity of 96.5%, and specificity of 90%. The results suggest that SS Mem enables ultrafast, highly sensitive lateral-flow immunoassays and shows great potential as a new type of lateral-flow membrane to broaden the application of LFA.


Assuntos
SARS-CoV-2 , Água , Água/química , SARS-CoV-2/isolamento & purificação , Membranas Artificiais , COVID-19 , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Humanos
2.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676115

RESUMO

In traditional tunnel monitoring, the characteristic points of an object within a tunnel are measured to obtain information about the object. Considering the limitations of the traditional method in measuring the complex surface structure of tunnels, such as limited monitoring points, a long measurement period, and low precision, this study introduces an approach that uses three-dimensional (3D) laser scanning for monitoring tunnel cross-section deformation. Using this approach, the soft surrounding rock of a high-altitude ultralong tunnel was taken as the monitoring object. The test tunnel was first scanned using a 3D laser scanner, and the collected data were processed. The internal structural data of the tunnel were subsequently compared with its actual contour lines and the data of its primary branch and secondary lining on different dates. The results indicate that the arch roof of the tunnel tended to be stable within a certain time range when the positions of the primary branch and secondary lining were at different measuring points with different pile numbers. The deformation of the pile number on the left and right sides did not generally exceed 0.02 m, except at a few measuring points. A comparison between the actual cross section of the initial branch and that of the designed section showed that the actual elevation of the arch of the initial branch of the tunnel was greater than its designed elevation by no more than 0.3 m. Hence, through this study, a convenient and practical method is presented for monitoring deformation in complex curved tunnel structures.

3.
Nano Lett ; 23(13): 6002-6009, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37342001

RESUMO

Inorganic halide perovskite nanocrystals (NCs) are being widely explored as next-generation optoelectronic materials. Critical to understanding the optoelectronic properties and stability behavior of perovskite NCs is the material's surface structure, where the local atomic configuration deviates from that of the bulk. Through low-dose aberration-corrected scanning transmission electron microscopy and quantitative imaging analysis techniques, we directly observed the atomic structure at the surface of the CsPbBr3 NCs. CsPbBr3 NCs are terminated by a Cs-Br plane, and the surface Cs-Cs bond length decreases significantly (∼5.6%) relative to the bulk, imposing compressive strain and inducing polarization, which we also observed in CsPbI3 NCs. Density functional theory calculations suggest such a reconstructed surface contributes to the separation of holes and electrons. These findings enhance our fundamental understanding of the atomic-scale structure, strain, and polarity at the surface of inorganic halide perovskites and provide valuable insights into designing stable and efficient optoelectronic devices.

4.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398598

RESUMO

The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.01 mM ethanol solution were mainly composed of a more uniform and ordered phase compared with those formed in 0.001 mM or 1 mM solutions. SAMs formed in a 0.01 mM solution at pH 2 were composed of a fully disordered phase with many irregular and bright aggregates, whereas SAMs formed at pH 7 had small ordered domains and many bright islands. As the solution pH increased from pH 7 to pH 12, the surface morphology of 2PymS SAMs remarkably changed from small ordered domains to large ordered domains, which can be described as a (4√2 × 3)R51° packing structure. XPS measurements clearly showed that the adsorption of DPymDS on Au(111) resulted in the formation of 2PymS (thiolate) SAMs via the cleavage of the disulfide (S-S) bond in DPymDS, and most N atoms in the pyrimidine rings existed in the deprotonated form. The results herein will provide a new insight into the molecular self-assembly behaviors and adsorption structures of DPymDS molecules on Au(111) depending on solution concentration and pH.

5.
Angew Chem Int Ed Engl ; 63(35): e202407736, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38735851

RESUMO

We have established a correlation between photocatalytic activity and dynamic structure/bond evolutions of BiOIO3-based photocatalysts during CO2 reduction by combining operando X-ray diffraction with photoelectron spectroscopy. More specifically, the selective photo-deposition of PtOx species on BiOIO3 (010) facets could effectively promote the electron enrichment on Bi active sites of (100) facets for facilitating the adsorption/activation of CO2 molecules, leading to the formation of Bi sites with high oxidation state and the shrink of crystalline structures. With introducing light irradiation to drive CO2 reduction, the Bi active sites with high oxidation states transformed into normal Bi3+ state, accompanying with the expansion of crystalline structures. Owing to the dynamic structure, bond, and chemical-state evolutions, a significant improvement of photocatalytic activity for CO evolution has been achieved on PtOx-BiOIO3 (195.0 µmol g-1 ⋅ h-1), much higher than the pristine (61.9 µmol g-1 ⋅ h-1) as well as metal-Pt decorated BiOIO3 (70.3 µmol g-1 ⋅ h-1) samples. This work provides new insights to correlate the intrinsically dynamic structure/bond evolutions with CO2 reduction activity, which may help to guide future photocatalyst design.

6.
Angew Chem Int Ed Engl ; 63(13): e202315034, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38352980

RESUMO

The efficient conversion and storage of solar energy for chemical fuel production presents a challenge in sustainable energy technologies. Metal nitrides (MNs) possess unique structures that make them multi-functional catalysts for water splitting. However, the thermodynamic instability of MNs often results in the formation of surface oxide layers and ambiguous reaction mechanisms. Herein, we present on the photo-induced reconstruction of a Mo-rich@Co-rich bi-layer on ternary cobalt-molybdenum nitride (Co3 Mo3 N) surfaces, resulting in improved effectiveness for solar water splitting. During a photo-oxidation process, the uniform initial surface oxide layer is reconstructed into an amorphous Co-rich oxide surface layer and a subsurface Mo-N layer. The Co-rich outer layer provides active sites for photocatalytic oxygen evolution reaction (POER), while the Mo-rich sublayer promotes charge transfer and enhances the oxidation resistance of Co3 Mo3 N. Additionally, the surface reconstruction yields a shortened Co-Mo bond length, weakening the adsorption of hydrogen and resulting in improved performance for both photocatalytic hydrogen evolution reaction (PHER) and POER. This work provides insight into the surface structure-to-activity relationships of MNs in solar energy conversion, and is expected to have significant implications for the design of metal nitride-based catalysts in sustainable energy technologies.

7.
J Biol Chem ; 298(3): 101706, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150742

RESUMO

Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood. Here, we describe the molecular determinants for chemical activation of TRPV3 by the agonist carvacrol. Patch clamp recordings reveal that carvacrol activates TRPV3 in a concentration-dependent manner, with an EC50 of 0.2 mM, by increasing the probability of single-channel open conformation. Molecular docking of carvacrol into cryo-EM structure of TRPV3 combined with site-directed mutagenesis further identified a unique binding pocket formed by the channel S2-S3 linker important for mediating this interaction. Within the binding pocket consisting of four residues (Ile505, Leu508, Arg509, and Asp512), we report that Leu508 is the most critical residue for the activation of TRPV3 by carvacrol, but not 2-APB, a widely used nonspecific agonist and TRP channel modulator. Our findings demonstrate a direct binding of carvacrol to TRPV3 by targeting the channel S2-S3 linker that serves as a critical domain for chemical-mediated activation of TRPV3. We also propose that carvacrol can function as a molecular tool in the design of novel specific TRPV3 modulators for the further understanding of TRPV3 channel pharmacology.


Assuntos
Cimenos , Monoterpenos , Canais de Cátion TRPV , Cimenos/farmacologia , Simulação de Acoplamento Molecular , Monoterpenos/farmacologia , Canais de Cátion TRPV/metabolismo
8.
Plant J ; 111(3): 819-835, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665549

RESUMO

For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, α-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and ß-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/metabolismo , Água/metabolismo
9.
Nano Lett ; 22(15): 6223-6228, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35849492

RESUMO

This paper proposes a one-step maskless 2D nanopatterning approach named self-aligned plasmonic lithography (SPL) by line-shaped ultrafast laser ablation under atmospheric conditions for the first time. Through a theoretical calculation of electric field and experimental verification, we proved that homogeneous interference of laser-excited surface plasmon polaritons (SPPs) can be achieved and used to generate long-range ordered 2D nanostructures in a self-aligned way over a wafer-sized area within several minutes. Moreover, the self-aligned nanostructures can be freely transferred between embossed nanopillars and engraved nanoholes by modulating the excitation intensity of SPPs interference through altering the incident laser energy. The SPL technique exhibits further controllability in the shape, orientation, and period of achievable nanopatterns on a wide range of semiconductors and metals by tuning processing parameters. Nanopatterned films can further act as masks to transfer structures into other bulk materials, as demonstrated in silica.

10.
J Environ Manage ; 348: 119265, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37837765

RESUMO

The selection of packing materials is essential to maintaining biofilter performance in waste gas treatment. In this study, 12 types of packing materials were evaluated to determine the most suitable for the SO2 removal by a thermophilic biofilter. Scanning electron microscopy and the Baunauer-Emmett-Teller equation were utilized to identify the texture of the tested packing materials, while Fourier transform infrared spectroscopy and X-ray diffraction were applied to analyze the surface functional groups and crystal structures, respectively. Characteristics were accompanied by economic considerations. Results showed that the polyurethane sponge had better porous structure and water retention than other packing materials. In terms of microbial growth and carrier economy, it was chosen for the biofilter used to treat SO2. The performance of a full-scale thermophilic biofilter with polyurethane sponge as the packing material was investigated for the purification of SO2-containing gases at an inlet temperature of 55 °C. The biofilter effectively removed SO2 at an average removal rate of 93.36%. Thermophilic bacteria and sulfur-oxidizing bacteria, e.g., Bacillus thermophilus, could attached growth on the surface of selected packing materials and exhibited degradation activity. This study provides an effective and feasible method of packing material selection for biological waste gas treatment.


Assuntos
Filtração , Poliuretanos , Filtração/métodos , Temperatura , Poliuretanos/química , Gases , Bactérias/metabolismo , Biodegradação Ambiental
11.
Bull Environ Contam Toxicol ; 112(1): 5, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063888

RESUMO

Recent studies have shown that the microplastics in waste activated sludge (WAS) can directly reduce the microbial activity and influence the performance of anaerobic digestion. Unfortunately, few studies paid attention on the interactions between WAS and MPs, since MPs could impact the contact between sludge flocs and microorganisms. We found that PVC-MP changed the interfacial energy properties of the WAS surface and affected methane production. Low concentration (40 mg/L) of PVC-MP changed the water affinity and greatly reduced the energy barrier of interfacial reaction. Simultaneously, WAS surface charge characteristics changed with increasing MPs concentration, which made the sludge difficult to contact with microorganisms. The change process of WAS surface functional groups also indicated that PVC-MP first cover the sludge surface to prevent from being utilized by microorganisms, and then affect the surface protein structure before toxic substances leaching. Our study provides new insights into how MPs affect anaerobic digestion.


Assuntos
Microplásticos , Esgotos , Esgotos/química , Microplásticos/metabolismo , Plásticos , Cloreto de Polivinila , Anaerobiose , Eliminação de Resíduos Líquidos , Reatores Biológicos , Metano
12.
Angew Chem Int Ed Engl ; 62(10): e202218595, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592112

RESUMO

The cathode materials work as the host framework for both Li+ diffusion and electron transport in Li-ion batteries. The Li+ diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO2 , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (Veff ) imposed in the bulk, thus driving more Li+ extraction/insertion and making LiCoO2 exhibit superior rate capability (154 mAh g-1 at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.

13.
Small ; 18(13): e2105420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119202

RESUMO

The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In-depth analysis of fire-damaged papers, by means of examples from the catastrophic fire in a 17th-century German library, shows the changes, which proceeded from the margin to the center, to go beyond surface charring and formation of hydrophobic carbon-rich layers. The charred paper exhibits structural changes in the nano- and micro-range, with increased porosity and water sorption. In less charred areas, cellulose is affected by both chain cleavage and cross-linking. Based on these results and conclusions with regard to adhesion of auxiliaries, a stabilization method is developed, which coats the damaged paper with a thin layer of cellulose nanofibers. It enables the reliable preservation of the paper and-most importantly-retrieval of the contained historical information: the nanofibers form a flexible, transparent film on the surface and adhere strongly to the damaged matrix, greatly reducing its fragility, giving it stability, and enabling digitization and further handling.


Assuntos
Celulose , Nanofibras , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Porosidade , Água
14.
Cytometry A ; 101(3): 254-263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34448526

RESUMO

The potential of flow cytometry for the study of changes in prodigiosin on the cell surface of Serratia marcescens is of academic and practical interest. This is because S. marcescens can produce prodigiosin, a secondary metabolite, with potential use as a cancer-cell inhibitor. In this study, three groups of bacterial cultures with different carbon sources were compared, and the effect of the addition of cAMP to the sucrose-based culture was studied. Both cellular morphology and DNA content were detected by flow cytometry, rendering a broad description of the bacterial behavior. It is the first use of flow cytometry to investigate the dynamics of prodigiosin on the surface of S. marcescens during growth in different media. The fluorescence intensity is related to the DNA content, the forward-scattered light is related to cell volume, and the side-scattered light is related to the surface morphology, especially the surface prodigiosin. These may contribute to the potential development of a bacterial metabolic monitoring strategy using both DNA content analysis and bacterial morphology based on flow cytometry technique.


Assuntos
Prodigiosina , Serratia marcescens , Meios de Cultura/metabolismo , DNA/metabolismo , Citometria de Fluxo , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Serratia marcescens/genética , Serratia marcescens/metabolismo
15.
Chemistry ; 28(41): e202104519, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35579495

RESUMO

Supported metal catalysts are important in many industrial reactions. It is reported that support materials are not always inert, and in some cases could even interact with metal nanoparticles (NPs) actively via various ways. In particular, the strong metal-support interaction (SMSI), referring to metal NPs covered by support materials, affects catalysis at the active sites on the metal NP surface, which can serve as a very effective method in tuning and improving catalytic performance. By tailoring the support materials or controlling the treatment processes, different kinds of SMSI, such as classical SMSI, oxidative SMSI, wet-chemistry SMSI, and adsorbate-mediated SMSI, can be achieved. This concept summarizes the general strategies to tune SMSI and discusses the key results. Moreover, a new proposal is presented to tailor SMSI by combining both the exposed facets of the support materials and external environments. Furthermore, the challenges faced at present are discussed and useful insights for future research concerning this topic are provided.

16.
Environ Res ; 208: 112693, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065066

RESUMO

Interfacial Gibbs free energy (IGFE) as a thermodynamic indicator characterize the stability of the natural system. For aerobic granular sludge (AGS), how IGFE determines the stability of sludge remains to be determined. The Gibbs free energy change at the AGS-water interface (ΔGswa) and AGS interfaces (ΔGsc) were selected as the main interfacial thermodynamic factors. Results indicated that the stable AGS was guaranteed with ΔGsc at the range of -31 to - 46 J m-2. Pearson correlation coefficients between ΔGswa/ ΔGsc and relative hydrophobicity, water content, SVI30, integrity coefficient were -0.9, 0.8, 0.85, and 0.84, which illustrated that the IGFE could be a more comprehensive thermodynamic indicator. Microbial community and EPS analysis verified the importance of denitrifiers, Amide III, protein-like substances for AGS stability. This work offers a new insight into the development of AGS stability based on IGFE.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Aerobiose , Reatores Biológicos , Eliminação de Resíduos Líquidos
17.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(10): 529-552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504195

RESUMO

A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.


Assuntos
Bactérias , Face , Membrana Celular
18.
Nano Lett ; 21(9): 3789-3797, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845574

RESUMO

Overlapping of Alzheimer's disease and Parkinson's disease is associated with the formation of hetero-oligomers derived from amyloid-beta and alpha-synuclein. However, the structural identity of the hetero-oligomer has yet to be elucidated, particularly at high resolution. Here, with atomic force microscopy, the surface structure of hetero-oligomer was examined with four AFM tips tethering one of the selected antibodies recognizing N-terminus or C-terminus of each peptide. All aggregates were found to be hetero-oligomers, and probability of recognizing the termini is higher than that for the homo-oligomers, suggesting that the termini of the former have a greater tendency to be located at the surface or the termini have more freedom to be recognized, probably through loose packing. The methodology in this study provides us with a new approach to elucidate the structure of such aggregates at the single-molecule level, allowing the exploration of other intrinsically disordered proteins frequently found in nature.


Assuntos
Doença de Alzheimer , Proteínas Intrinsicamente Desordenadas , Doença de Parkinson , Amiloide , Peptídeos beta-Amiloides , Humanos , Microscopia de Força Atômica , alfa-Sinucleína
19.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615294

RESUMO

The electrocatalytic characteristics of nanostructures are significantly affected by surface structure. The strict regulation of structural characteristics is highly beneficial for the creation of novel nanocatalysts with enhanced electrocatalytic performance. This work reports a nitrite electrochemical sensor based on novel flower-like Pd-ZnO nanostructures. The Pd-ZnO nanocatalysts were synthesized through a simple hydrothermal method, and their morphology and structure were characterized via field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Their electrocatalytical performance in the nitrite oxidation reaction was studied via cyclic voltammetry (CV) and the amperometric technique. Compared to pure ZnO and Pd nanoparticles, the Pd-ZnO nanostructures exhibited enhanced electrochemical performance in the nitrite oxidation reaction. In order to investigate the relationships between the structures of Pd-ZnO nanocatalysts and the corresponding electrocatalytic performances, different surface morphologies of Pd-ZnO nanocatalysts were fabricated by altering the solution pH. It was found that the flower-like Pd-ZnO nanostructures possessed larger effective surface areas and faster electron transfer rates, resulting in the highest electrocatalytic performance in the nitrite oxidation reaction. The designed nitrite sensor based on flower-like Pd-ZnO displayed a wide concentration linear range of 1 µM-2350 µM, a low detection limit of 0.2 µM (S/N of 3), and high sensitivity of 151.9 µA mM-1 cm-2. Furthermore, the proposed sensor exhibited perfect selectivity, excellent reproducibility, and long-time stability, as well as good performance in real sample detection.


Assuntos
Nitritos , Óxido de Zinco , Óxido de Zinco/química , Reprodutibilidade dos Testes , Eletrodos , Limite de Detecção
20.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080145

RESUMO

To probe the effects of deposition temperature on the formation and structural order of self-assembled monolayers (SAMs) on Au(111) prepared by vapor deposition of 2-(2-methoxyethoxy)ethanethiol (CH3O(CH2)2O(CH2)2SH, EG2) for 24 h, we examined the surface structure and electrochemical behavior of the resulting EG2 SAMs using scanning tunneling microscopy (STM) and cyclic voltammetry (CV). STM observations clearly revealed that EG2 SAMs vapor-deposited on Au(111) at 298 K were composed of a disordered phase on the entire Au surface, whereas those formed at 323 K showed improved structural order, showing a mixed phase of ordered and disordered phases. Moreover, at 348 K, uniform and highly ordered EG2 SAMs on Au(111) were formed with a (2 × 3√3) packing structure. CV measurements showed sharp reductive desorption (RD) peaks at -0.818, -0.861, and -0.880 V for EG2 SAM-modified Au electrodes formed at 298, 323, and 348 K, respectively. More negative potential shifts of RD peaks with increasing deposition temperature are attributed to an increase in van der Waals interactions between EG2 molecular backbones resulting from the improved structural quality of EG2 SAMs. Our results obtained herein provide new insights into the formation and thermally driven structural order of oligo(ethylene glycol)-terminated SAMs vapor-deposited on Au(111).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA