RESUMO
Objective: Swertiamarin (STM) belongs to iridoid class of compounds, and the heat-transformed products (HTPS) are produced by STM in the process of drug processing. The purpose of this study was to explore the protective effect and mechanism of STM or HTPS on acetaminophen (APAP)-induced hepatotoxicity. Methods: Mice and L-O2 cells were given APAP to establish the hepatotoxicity model in vivo and in vitro. The effects of STM or HTPS on oxidative stress, inflammation, and apoptosis induced by APAP were evaluated, with N-acetylcysteine (NAC) as a positive control. Results: STM or HTPS reduced the APAP-induced apoptosis of L-O2 cells and significantly alleviated the liver injury index induced by APAP (p < 0.01, 0.005) Interestingly, HTPS had better protective effect against APAP-induced hepatotoxicity than STM (p < 0.05). In addition STM or HTPS improved the histological abnormalities; inhibited lipid peroxidation and reduced the level of inflammatory mediators. They also activated the defense system of nuclear factor erythroid 2 related factor 2 (Nrf-2) and inhibited nuclear factor-κ B (NF-κB).
RESUMO
In this study, we isolated the pectic polysaccharide WSMP-A2b (37 kDa) from the stems and leaves of Swertia mileensis, and we investigated its compositional/structural features and antioxidant activity. FT-IR, NMR, monosaccharide composition, enzymatic hydrolysis and methylation analyses indicated that WSMP-A2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 2.1:1.0:2.2. The RG-I domain is primarily substituted with α-L-1,5-arabinan and type II arabinogalactan (AG-II) side chains, as well as minor contributions of ß-D-1,4-galactan and/or type I arabinogalactan (AG-I) side chains. The HG domain was released in the form of un-esterified and partly methyl-esterified and/or acetyl-esterified oligogalacturonides with a 1 to 7 degree of polymerization after endo-polygalacturonase degradation. WSMP-A2b showed stronger antioxidant activity in vitro, in part this might due to the presence of galacturonic acid (GalA). In addition, WSMP-A2b exerted a protective effect on tert-butyl hydroperoxide (tBHP)-induced oxidative stress in INS-1 cells by reducing reactive oxygen species (ROS) production and increasing the glutathione/oxidized glutathione (GSH/GSSG) ratio. Our results provide crucial structural information on this pectic polysaccharide from Swertia mileensis, thus prompting further investigation into its structure-activity relationship.
Assuntos
Swertia , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Pectinas/química , Espectroscopia de Ressonância MagnéticaRESUMO
Swertia mileensis is an important medicinal plant endemic to South-east Yunnan, China, which has been widely used to treat icteric hepatitis. The complete chloroplast genome sequence of S. mileensis is presented in this study, the total size is 153,015 bp in length with a typical quadripartite structure including a pair of inverted repeat (IRs, 25,786 bp) regions separated by a large single copy (LSC, 83,048 bp) region and a small single copy (SSC, 18,395 bp) region. The overall GC content of it is 38.2%. The cp genome has 134 annotated genes, including 85 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Among these genes, nine genes have one intron and two genes contain two introns. The phylogenetic tree based on 16 complete plastomes of support close relationships among two species of Swertia with 100% bootstrap value.
RESUMO
Three new acetylated C-glycosylflavones, 3â³,6â³-di-O-acetylswertiajaponin (1), 4â³,6â³-di-O-acetylswertiajaponin (2), and 6â³-O-acetylswertiajaponin (3), together with six known compounds were isolated from the whole herb of Swertia mileensis. Their structures were elucidated on extensive NMR experiments and mass spectrometry studies. 1H and 13C NMR data exhibited doublet signals at room temperature. Variable temperature 1H NMR experiments were carried out to investigate the presence of rotational isomerism of C-glycosylflavones. All compounds showed potential antioxidant activities against apoptosis of H2O2-induced human embryo liver L02 cells.
Assuntos
Flavonas/química , Swertia/química , HumanosRESUMO
BACKGROUND: Millions of people are killed by viral hepatitis every year in the world, whereas many relevant medicines are too expensive to purchase. Swertia mileensis, a medicinal plant for hepatitis in the system of traditional Chinese medicine, has been vanishing gradually because of overexploitation. OBJECTIVE: To find substitutes of S. mileensis and reduce the cost of purchasing drugs for hepatitis patients, the similarity of phytochemical constituents between S. mileensis and other three Swertia species was compared. MATERIALS AND METHODS: Both ultra high performance liquid chromatographies and ultraviolet-vis fingerprints of four Swertia species were developed. Methanol extracts of the stems and leaves were used as samples to establish the fingerprint. The calibration curve was drawn for quantitative analysis of swertiamarin. The data of ultra high performance liquid chromatographies were evaluated statistically using similarity analysis and principal component analysis. RESULTS: The result shows a significant difference at area of 204-290 nm in the ultraviolet fingerprint. Swertiamarin, the only one common peak, was defined in chromatographic fingerprints of four Swertia species. The quantitative analysis suggested that the highest concentration of swertiamarin is in S. davidii. The similarity indexes between different samples were almost under 0.60. In the principal component analysis, separate points not only represent the distinction among different species, but also perform chemical discrepancies in content between stems and leaves of one same species. CONCLUSIONS: S. angustifolia, S. davidii, and S. punicea are not suitable as substitutes of S. mileensis because of their remarkable differences in entirety and local part. In order to address issues about substitutes and high cost of purchasing drugs, more studies need to undertake. SUMMARY: The UHPLC fingerprint method indicated the significant difference on chemical ingredients in four plants from Swertia.Swertiamarin is the unique common compounds for four plants, which exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide.