Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Differentiation ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37783652

RESUMO

Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.

2.
Am J Med Genet A ; 182(6): 1438-1448, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32259393

RESUMO

Multiple synostoses syndrome (SYNS1; OMIM# 186500) is a rare autosomal dominant disorder reported in a few cases worldwide. We report a Chinese pedigree characterized by proximal symphalangism, conductive hearing loss, and distinctive facies. We examined the genetic cause and reviewed the literature to discuss the pathogeny, treatment, and prevention of SYNS1. Audiological, ophthalmological, and radiological examinations were evaluated. Whole-exome sequencing (WES) was performed to identify mutations in the proband and her parents. Sanger sequencing was used to verify the results for the proband, parents, and grandmother. The literature on the genotype-phenotype correlation was reviewed. The patient was diagnosed with multiple synostoses syndrome clinically. WES and bioinformatic analysis revealed a novel missense mutation in the NOG gene, c.554C>G (p.Ser185Cys), cosegregated in this family. The literature review showed that the phenotype varies widely, but the typical facies, conductive hearing loss, and proximal symphalangism occurred frequently. All reported mutations are highly conserved in mammals based on conservation analysis, and there are regional hot spots for these mutations. However, no distinct genotype-phenotype correlations have been identified for mutations in NOG in different races. Regular systematic examinations and hearing aids are beneficial for this syndrome. However, the outcomes of otomicrosurgery are not encouraging owing to the regrowth of bone. This study expanded the mutation spectrum of NOG and is the first report of SYNS1 in a Chinese family. Genetic testing is recommended as part of the diagnosis of syndromic deafness. A clinical genetic evaluation is essential to guide prevention, such as preimplantation genetic diagnosis.


Assuntos
Anquilose/genética , Ossos do Carpo/anormalidades , Proteínas de Transporte/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Perda Auditiva Condutiva/genética , Estribo/anormalidades , Sinostose/genética , Ossos do Tarso/anormalidades , Falanges dos Dedos do Pé/anormalidades , Anquilose/complicações , Anquilose/epidemiologia , Anquilose/patologia , Ossos do Carpo/patologia , Criança , Pré-Escolar , China/epidemiologia , Feminino , Deformidades Congênitas do Pé/complicações , Deformidades Congênitas do Pé/epidemiologia , Deformidades Congênitas do Pé/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Deformidades Congênitas da Mão/complicações , Deformidades Congênitas da Mão/epidemiologia , Deformidades Congênitas da Mão/patologia , Perda Auditiva Condutiva/complicações , Perda Auditiva Condutiva/epidemiologia , Perda Auditiva Condutiva/patologia , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Estribo/patologia , Sinostose/complicações , Sinostose/epidemiologia , Sinostose/patologia , Ossos do Tarso/patologia , Falanges dos Dedos do Pé/patologia , Dedos do Pé/anormalidades , Dedos do Pé/patologia , Sequenciamento do Exoma
3.
Am J Med Genet A ; 173(4): 1082-1086, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28328141

RESUMO

Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS.


Assuntos
Anormalidades Múltiplas/genética , Sequência de Bases , Cromossomos Humanos Par 8/química , Recombinação Homóloga , Deformidades Congênitas dos Membros/genética , Elementos Nucleotídeos Longos e Dispersos , Deleção de Sequência , Sinostose/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/etnologia , Anormalidades Múltiplas/patologia , Povo Asiático , Criança , Variações do Número de Cópias de DNA , Feminino , Genes Dominantes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/etnologia , Deformidades Congênitas dos Membros/patologia , Transportadores de Ânions Orgânicos/deficiência , Transportadores de Ânions Orgânicos/genética , Sulfotransferases/deficiência , Sulfotransferases/genética , Sinostose/diagnóstico , Sinostose/etnologia , Sinostose/patologia
4.
Iran J Public Health ; 53(6): 1381-1393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39430143

RESUMO

Background: Bone Morphogenetic Proteins and the related Growth and Differentiation Factors (GDFs) are much conserved signaling proteins. GDF5 is pivotal for skeletal development. Several skeletal dysplasia and malformation syndromes are known as a result of mutations in GDF5. Multiple Synostosis Syndrome2 (SYNS2) is characterized by tarsal-carpal coalition, humeroradial synostosis, brachydactyly, and proximal symphalangism. In this study, we analyzed a large Iranian pedigree affected with a new type of SYNS2 (Farhud Type) in five successive generations. Methods: In this family-based study (1982-2022), Genetic linkage analysis of the pedigree (58affected, 62healthy) excluded the locus on chromosome 17q21-q22 in our previous study. Thus, we focused on 20q11.22 locus and GDF5 gene. Genetic investigations were performed on 16 patients with SYNS2 and 40 healthy individuals. Results: Whole-exome-sequencing results identified a heterozygote missense mutation in exon2 of GDF5 (NG_008076.1:g.9239G>A, NM_000557.2:c.1424G>A, S475N, rs121909347). This mutation was found in all patients but not in the unaffected individuals. This missense mutation is notable because S475 is strictly conserved among different species, and it is located in a highly conserved and active mature domain of GDF5 (phyloP100way=7.64). The corresponding defect in GDF5 may have unknown interaction with normal active 3rd and 4th structure of the product. Further bioinformatics study (amino acid multiple alignments) showed that the S475 is a much-conserved residue in many different species. Conclusion: These results introduce a new role of GDF5 in pathogenesis of a SYNS2 (Farhud Type), considered in genetic counseling, prenatal diagnosis, and as a potential target for molecular therapy, if possible.

5.
JOR Spine ; 7(1): e1302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38222807

RESUMO

Objective: This study aimed to identify the molecular defects and clinical manifestations in a Chinese family with brachydactyly (BD) type A1 (BDA1) and multiple-synostoses syndrome 2 (SYNS2). Methods: A Chinese family with BDA1 and SYNS2 was enrolled in this study. Whole-exome sequencing was used to analyze the gene variants in the proband. The sequences of the candidate pathogenic variant in GDF5 was validated via Sanger sequencing. I-TASSER and PyMOL were used to analyze the functional domains of the corresponding mutant proteins. Results: The family was found to have an autosomal-dominantly inherited combination of BDA1 and SYNS2 caused by the S475N variant in the GDF5 gene. The variant was located within the functional region, and the mutated residue was found to be highly conserved among species. Via bioinformatic analyses, we predicted this variant to be deleterious, which perturb the protein function. The substitution of the negatively charged amino acid S475 with the neutral N475 was predicted to disrupt the formation of salt bridges with Y487 and impair the structure, stability, and function of the protein, consequently, the abnormalities in cartilage and bone development ensue. Conclusions: A single genetic variant (S475N) which disrupt the formation of salt bridges with Y487, in the interface of the antagonist- and receptor-binding sites of GDF5 concurrently causes two pathological mechanisms. This is the first report of this variant, identified in a Chinese family with BDA1 and SYNS2.

6.
Mol Cytogenet ; 17(1): 15, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992676

RESUMO

BACKGROUND: Mesomelia-Synostoses Syndrome (MSS)(OMIM 600,383) is a rare autosomal dominant disorder characterized by mesomelic limb shortening, acral synostoses and multiple congenital malformations which is described as a contiguous deletion syndrome involving the two genes SULF1 and SLCO5A1. The study of apparently balanced chromosomal rearrangements (BCRs) is a cytogenetic strategy used to identify candidate genes associated with Mendelian diseases or abnormal phenotypes. With the improved development of genomic technologies, new methods refine this search, allowing better delineation of breakpoints as well as more accurate genotype-phenotype correlation. CASE PRESENTATION: We present a boy with a global development deficit, delayed speech development and an ASD (Asperger) family history, with an apparently balanced "de novo" reciprocal translocation [t(1;8)(p32.2;q13)dn]. The cytogenetic molecular study identified a likely pathogenic deletion of 21 kb in the 15q12 region, while mate pair sequencing identified gene-truncations at both the 1p32.2 and 8q13 translocation breakpoints. CONCLUSIONS: The identification of a pathogenic alteration on 15q12 involving GABRA5 was likely the main cause of the ASD-phenotype. Importantly, the chr8 translocation breakpoint truncating SLCO5A1 exclude SLCO5A1 as a candidate for MSS, leaving SULF1 as the primary candidate. However, the deletions observed in MSS remove a topological associated domain (TAD) boundary separating SULF1 and SLCO5A1. Hence, Mesomelia-Synostoses syndrome is either caused by haploinsufficiency of SULF1 or ectopic enhancer effects where skeletal/chrondrogenic SULF1 enhancers drive excopic expression of developmental genes in adjacent TADs including PRDM14, NCOA2 and/or EYA1.

7.
Genes (Basel) ; 14(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980996

RESUMO

Multiple synostoses syndrome (OMIM: #186500, #610017, #612961, #617898) is a genetically heterogeneous group of autosomal dominant diseases characterized by abnormal bone unions. The joint fusions frequently involve the hands, feet, elbows or vertebrae. Pathogenic variants in FGF9 have been associated with multiple synostoses syndrome type 3 (SYNS3). So far, only five different missense variants in FGF9 that cause SYNS3 have been reported in 18 affected individuals. Unlike other multiple synostoses syndromes, conductive hearing loss has not been reported in SYNS3. In this report, we describe the clinical and selected radiological findings in a large multigenerational family with a novel missense variant in FGF9: c.430T>C, p.(Trp144Arg). We extend the phenotypic spectrum of SYNS3 by suggesting that cleft palate and conductive hearing loss are part of the syndrome and highlight the high degree of intrafamilial phenotypic variability. These findings should be considered when counseling affected individuals.


Assuntos
Perda Auditiva Condutiva , Sinostose , Humanos , Família Estendida , Fator 9 de Crescimento de Fibroblastos , Perda Auditiva Condutiva/genética , Mutação de Sentido Incorreto , Síndrome
8.
Mol Genet Genomic Med ; 10(5): e1933, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332702

RESUMO

OBJECTIVE: Analyze the clinical and genetic characteristics of a rare Chinese family with Multiple synostoses syndrome and identify the causative variant with the high-throughput sequencing approach. METHODS: The medical history investigation, physical examination, imaging examination, and audiological examination of the family members were performed. DNA samples were extracted from the family members. The candidate variant was identified by performing whole-exome sequencing of the proband, then verified by Sanger sequencing in the family. RESULTS: The family named HBSY-018 from Hubei province had 18 subjects in three generations, and six subjects were diagnosed with conductive or mixed hearing loss. Meanwhile, characteristic features including short philtrum, hemicylindrical nose, and hypoplastic alae nasi were noticed among those patients. Symptoms of proximal interdigital joint adhesion and inflexibility were found. The family was diagnosed as Multiple synostoses syndrome type 1 (SYNS1).The inheritance pattern of this family was autosomal dominant. A novel mutation in the NOG gene c.533G>A was identified by performing whole-exome sequencing of the proband. The substitution of cysteine encoding 178th position with tyrosine (p.Cys178Tyr) was caused by this mutation, which was conserved across species. Co-segregation of disease phenotypes was demonstrated by the family verification. CONCLUSION: The family diagnosed as SYNS1 was caused by the novel mutation (c.533G>A) of NOG. The combination of clinical diagnosis and molecular diagnosis had improved the understanding of this rare disease and provided a scientific basis for genetic counseling in the family.


Assuntos
Deformidades Congênitas do Pé , Sinostose , Ossos do Carpo/anormalidades , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão , Humanos , Mutação , Linhagem , Estribo/anormalidades , Sinostose/genética , Ossos do Tarso/anormalidades
9.
Matrix Biol Plus ; 11: 100071, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34435185

RESUMO

Bone morphogenic proteins (BMPs) are important growth regulators in embryogenesis and postnatal homeostasis. Their tight regulation is crucial for successful embryonic development as well as tissue homeostasis in the adult organism. BMP inhibition by natural extracellular biologic antagonists represents the most intensively studied mechanistic concept of BMP growth factor regulation. It was shown to be critical for numerous developmental programs, including germ layer specification and spatiotemporal gradients required for the establishment of the dorsal-ventral axis and organ formation. The importance of BMP antagonists for extracellular matrix homeostasis is illustrated by the numerous human connective tissue disorders caused by their mutational inactivation. Here, we will focus on the known functional interactions targeting BMP antagonists to the ECM and discuss how these interactions influence BMP antagonist activity. Moreover, we will provide an overview about the current concepts and investigated molecular mechanisms modulating BMP inhibitor function in the context of development and disease.

10.
Mol Syndromol ; 9(5): 228-234, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30733656

RESUMO

A 4-generation family with multiple synostoses syndrome type 4 (SYNS4) is reported, the third family identified so far. The phenotype segregated with a previously undescribed Asn399Lys (c.1197C>A) substitution in GDF6. N399 is part of a hydrophobic pocket critical for binding the BMP/GDF antagonist noggin. The N399K substitution renders GDF6 more similar to noggin-resistant members of the BMP family, namely GDF2 and BMP10, both of which contain lysine in the corresponding position. To further define the SYNS4 phenotype, we examined 6 of 9 affected family members. The phenotype was carpal and tarsal synostoses with painful feet after walking, but the condition could also be asymptomatic. Interestingly, unlike the previous SYNS4 families, the family presented here has no history of hearing loss, and a 73-year-old mutation carrier had normal audiometry for his age. Based on structure modelling, BMPR2 binding should not be affected by the GDF6-N399K substitution, unlike the S429R and Y444N mutations found in the 2 other families. Hypothetically, this difference may be related to lack of hearing loss.

11.
J Bone Miner Res ; 31(4): 882-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26643732

RESUMO

Growth and differentiation factors (GDFs) are secreted signaling molecules within the BMP family that have critical roles in joint morphogenesis during skeletal development in mice and humans. Using genetic data obtained from a six-generation Chinese family, we identified a missense variant in GDF6 (NP_001001557.1; p.Y444N) that fully segregates with a novel autosomal dominant synostoses (SYNS) phenotype, which we designate as SYNS4. Affected individuals display bilateral wrist and ankle deformities at birth and progressive conductive deafness after age 40 years. We find that the Y444N variant affects a highly conserved residue of GDF6 in a region critical for binding of GDF6 to its receptor(s) and to the BMP antagonist NOG, and show that this mutant GDF6 is a more potent stimulator of the canonical BMP signaling pathway compared with wild-type GDF6. Further, we determine that the enhanced BMP activity exhibited by mutant GDF6 is attributable to resistance to NOG-mediated antagonism. Collectively, our findings indicate that increased BMP signaling owing to a GDF6 gain-of-function mutation is responsible for loss of joint formation and profound functional impairment in patients with SYNS4. More broadly, our study highlights the delicate balance of BMP signaling required for proper joint morphogenesis and reinforces the critical role of BMP signaling in skeletal development.


Assuntos
Proteínas Morfogenéticas Ósseas , Ossos do Carpo/anormalidades , Proteínas de Transporte , Deformidades Congênitas do Pé , Fator 6 de Diferenciação de Crescimento , Deformidades Congênitas da Mão , Mutação de Sentido Incorreto , Transdução de Sinais/genética , Estribo/anormalidades , Sinostose , Ossos do Tarso/anormalidades , Substituição de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Ossos do Carpo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Deformidades Congênitas do Pé/genética , Deformidades Congênitas do Pé/metabolismo , Fator 6 de Diferenciação de Crescimento/genética , Fator 6 de Diferenciação de Crescimento/metabolismo , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/metabolismo , Humanos , Camundongos , Estribo/metabolismo , Sinostose/genética , Sinostose/metabolismo , Ossos do Tarso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA