Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Theor Biol ; 404: 236-250, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27288542

RESUMO

Although various types of ion channels are known to have an impact on human T cell effector functions, their exact mechanisms of influence are still poorly understood. The patch clamp technique is a well-established method for the investigation of ion channels in neurons and T cells. However, small cell sizes and limited selectivity of pharmacological blockers restrict the value of this experimental approach. Building a realistic T cell computer model therefore can help to overcome these kinds of limitations as well as reduce the overall experimental effort. The computer model introduced here was fed off ion channel parameters from literature and new experimental data. It is capable of simulating the electrophysiological behaviour of resting and activated human CD4(+) T cells under basal conditions and during extracellular acidification. The latter allows for the very first time to assess the electrophysiological consequences of tissue acidosis accompanying most forms of inflammation.


Assuntos
Simulação por Computador , Doença , Fenômenos Eletrofisiológicos , Saúde , Linfócitos T/citologia , Linfócitos T CD4-Positivos/metabolismo , Cálcio/metabolismo , Cátions , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Potenciais da Membrana , Modelos Biológicos , Potássio/metabolismo , Medula Espinal/metabolismo
2.
J Immunol Methods ; 461: 78-84, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30158076

RESUMO

A network of ion currents influences basic cellular T cell functions. After T cell receptor activation, changes in highly regulated calcium levels play a central role in triggering effector functions and cell differentiation. A dysregulation of these processes might be involved in the pathogenesis of several diseases. We present a mathematical model based on the NEURON simulation environment that computes dynamic calcium levels in combination with the current output of diverse ion channels (KV1.3, KCa3.1, K2P channels (TASK1-3, TRESK), VRAC, TRPM7, CRAC). In line with experimental data, the simulation shows a strong increase in intracellular calcium after T cell receptor stimulation before reaching a new, elevated calcium plateau in the T cell's activated state. Deactivation of single ion channel modules, mimicking the application of channel blockers, reveals that two types of potassium channels are the main regulators of intracellular calcium level: calcium-dependent potassium (KCa3.1) and two-pore-domain potassium (K2P) channels.


Assuntos
Sinalização do Cálcio/imunologia , Fenômenos Eletrofisiológicos/imunologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Modelos Imunológicos , Canais de Potássio de Domínios Poros em Tandem/imunologia , Linfócitos T/imunologia , Cálcio/imunologia , Humanos , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA