Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108338

RESUMO

The phage T7 RNA polymerase (RNAP) and lysozyme form the basis of the widely used pET expression system for recombinant expression in the biotechnology field and as a tool in microbial synthetic biology. Attempts to transfer this genetic circuitry from Escherichia coli to non-model bacterial organisms with high potential have been restricted by the cytotoxicity of the T7 RNAP in the receiving hosts. We here explore the diversity of T7-like RNAPs mined directly from Pseudomonas phages for implementation in Pseudomonas species, thus relying on the co-evolution and natural adaptation of the system towards its host. By screening and characterizing different viral transcription machinery using a vector-based system in P. putida., we identified a set of four non-toxic phage RNAPs from phages phi15, PPPL-1, Pf-10, and 67PfluR64PP, showing a broad activity range and orthogonality to each other and the T7 RNAP. In addition, we confirmed the transcription start sites of their predicted promoters and improved the stringency of the phage RNAP expression systems by introducing and optimizing phage lysozymes for RNAP inhibition. This set of viral RNAPs expands the adaption of T7-inspired circuitry towards Pseudomonas species and highlights the potential of mining tailored genetic parts and tools from phages for their non-model host.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Biologia Sintética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica
2.
mSystems ; 8(2): e0118922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36794936

RESUMO

Autographiviridae is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. Here, we characterized Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range which likely uses lipopolysaccharide (LPS) as a phage receptor. Interestingly, infection dynamics of LUZ100 indicated moderate adsorption rates and low virulence, hinting at temperate characteristics. This hypothesis was supported by genomic analysis, which showed that LUZ100 shares the conventional T7-like genome organization yet carries key genes associated with a temperate lifestyle. To unravel the peculiar characteristics of LUZ100, ONT-cappable-seq transcriptomics analysis was performed. These data provided a bird's-eye view of the LUZ100 transcriptome and enabled the discovery of key regulatory elements, antisense RNA, and transcriptional unit structures. The transcriptional map of LUZ100 also allowed us to identify new RNA polymerase (RNAP)-promoter pairs that can form the basis for biotechnological parts and tools for new synthetic transcription regulation circuitry. The ONT-cappable-seq data revealed that the LUZ100 integrase and a MarR-like regulator (proposed to be involved in the lytic/lysogeny decision) are actively cotranscribed in an operon. In addition, the presence of a phage-specific promoter transcribing the phage-encoded RNA polymerase raises questions on the regulation of this polymerase and suggests that it is interwoven with the MarR-based regulation. This transcriptomics-driven characterization of LUZ100 supports recent evidence that T7-like phages should not automatically be assumed to have a strictly lytic life cycle. IMPORTANCE Bacteriophage T7, considered the "model phage" of the Autographiviridae family, is marked by a strictly lytic life cycle and conserved genome organization. Recently, novel phages within this clade have emerged which display characteristics associated with a temperate life cycle. Screening for temperate behavior is of utmost importance in fields like phage therapy, where strictly lytic phages are generally required for therapeutic applications. In this study, we applied an omics-driven approach to characterize the T7-like Pseudomonas aeruginosa phage LUZ100. These results led to the identification of actively transcribed lysogeny-associated genes in the phage genome, pointing out that temperate T7-like phages are emerging more frequent than initially thought. In short, the combination of genomics and transcriptomics allowed us to obtain a better understanding of the biology of nonmodel Autographiviridae phages, which can be used to optimize the implementation of phages and their regulatory elements in phage therapy and biotechnological applications, respectively.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Fagos de Pseudomonas/genética , Transcriptoma , Lisogenia , Bacteriófago T7/genética , RNA Polimerases Dirigidas por DNA/genética
3.
Viruses ; 10(4)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614052

RESUMO

Yersinia enterocolitica causes enteric infections in humans and animals. Human infections are often caused by contaminated pork meat. Y. enterocolitica colonizes pig tonsils and pigs secrete both the human pathogen and its specific bacteriophages into the stools. In this work, sixteen Y. enterocolitica-infecting lytic bacteriophages isolated from pig stools originating from several pig farms were characterized. All phages belong to the Podoviridae family and their genomes range between 38,391-40,451 bp in size. The overall genome organization of all the phages resembled that of T7-like phages, having 3-6 host RNA polymerase (RNAP)-specific promoters at the beginning of the genomes and 11-13 phage RNAP-specific promoters as well as 3-5 rho-independent terminators, scattered throughout the genomes. Using a ligation-based approach, the physical termini of the genomes containing direct terminal repeats of 190-224 bp were established. No genes associated with lysogeny nor any toxin, virulence factor or antibiotic resistance genes were present in the genomes. Even though the phages had been isolated from different pig farms the nucleotide sequences of their genomes were 90-97% identical suggesting that the phages were undergoing microevolution within and between the farms. Lipopolysaccharide was found to be the surface receptor of all but one of the phages. The phages are classified as new species within the T7virus genus of Autographivirinae subfamily.


Assuntos
Genoma Viral , Genômica , Podoviridae/fisiologia , Doenças dos Suínos/microbiologia , Yersiniose/veterinária , Yersinia enterocolitica/virologia , Animais , Bacteriólise , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Filogenia , Podoviridae/classificação , Podoviridae/isolamento & purificação , Podoviridae/ultraestrutura , Suínos , Sequenciamento do Exoma
4.
Virology ; 492: 73-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26901487

RESUMO

The genome organization, gene structure, and host range of five podoviruses that infect Ralstonia solanacearum, the causative agent of bacterial wilt disease were characterized. The phages fell into two distinctive groups based on the genome position of the RNA polymerase gene (i.e., T7-type and ϕKMV-type). One-step growth experiments revealed that ϕRSB2 (a T7-like phage) lysed host cells more efficiently with a shorter infection cycle (ca. 60 min corresponding to half the doubling time of the host) than ϕKMV-like phages such as ϕRSB1 (with an infection cycle of ca. 180 min). Co-infection experiments with ϕRSB1 and ϕRSB2 showed that ϕRSB2 always predominated in the phage progeny independent of host strains. Most phages had wide host-ranges and the phage particles usually did not attach to the resistant strains; when occasionally some did, the phage genome was injected into the resistant strain's cytoplasm, as revealed by fluorescence microscopy with SYBR Gold-labeled phage particles.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Variação Genética , Genoma Viral , Podoviridae/genética , Ralstonia solanacearum/virologia , Proteínas Virais/genética , Bacteriófagos , Mapeamento Cromossômico , Coinfecção , Genótipo , Especificidade de Hospedeiro , Lisogenia/genética , Tipagem Molecular , Doenças das Plantas/microbiologia , Podoviridae/classificação , Podoviridae/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA