Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 65(5): 941-955.e8, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190767

RESUMO

Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.


Assuntos
Espectrometria de Massas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Transdução de Sinais , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Animais , Sítios de Ligação , Biologia Computacional , Cisteína Endopeptidases/metabolismo , Bases de Dados de Proteínas , Células-Tronco Embrionárias/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitina Tiolesterase , Neoplasias do Colo do Útero/metabolismo , Fluxo de Trabalho
2.
J Biol Chem ; 299(3): 102907, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642184

RESUMO

The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.


Assuntos
Miócitos Cardíacos , Transdução de Sinais , Humanos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Fosforilação , Hipertrofia/metabolismo , Proteínas/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo
3.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34104941

RESUMO

Zygotic genomic activation (ZGA) is a landmark event in the maternal-to-zygotic transition (MZT), and the regulation of ZGA by maternal factors remains to be elucidated. In this study, the depletion of maternal ring finger protein 114 (RNF114), a ubiquitin E3 ligase, led to developmental arrest of two-cell mouse embryos. Using immunofluorescence and transcriptome analysis, RNF114 was proven to play a crucial role in major ZGA. To study the underlying mechanism, we performed protein profiling in mature oocytes and found a potential substrate for RNF114, chromobox 5 (CBX5), ubiquitylation and degradation of which was regulated by RNF114. The overexpression of CBX5 prevented embryonic development and impeded major ZGA. Furthermore, TAB1 was abnormally accumulated in mutant two-cell embryos, which was consistent with the result of in vitro knockdown of Rnf114. Knockdown of Cbx5 or Tab1 in maternal RNF114-depleted embryos partially rescued developmental arrest and the defect of major ZGA. In summary, our study reveals that maternal RNF114 plays a precise role in degrading some important substrates during the MZT, the misregulation of which may impede the appropriate activation of major ZGA in mouse embryos.


Assuntos
Desenvolvimento Embrionário/fisiologia , Genoma , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Zigoto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Fatores de Transcrição/metabolismo , Transcriptoma
4.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918053

RESUMO

Plant development depends on the activity of pluripotent stem cells in meristems, such as the shoot apical meristem and the flower meristem. In Arabidopsis thaliana, WUSCHEL (WUS) is essential for stem cell homeostasis in meristems and integument differentiation in ovule development. In rice (Oryza sativa), the WUS ortholog TILLERS ABSENT 1 (TAB1) promotes stem cell fate in axillary meristem development, but its function is unrelated to shoot apical meristem maintenance in vegetative development. In this study, we examined the role of TAB1 in flower development. The ovule, which originates directly from the flower meristem, failed to differentiate in tab1 mutants, suggesting that TAB1 is required for ovule formation. Expression of a stem cell marker was completely absent in the flower meristem at the ovule initiation stage, indicating that TAB1 is essential for stem cell maintenance in the 'final' flower meristem. The ovule defect in tab1 was partially rescued by floral organ number 2 mutation, which causes overproliferation of stem cells. Collectively, it is likely that TAB1 promotes ovule formation by maintaining stem cells at a later stage of flower development.


Assuntos
Diferenciação Celular/genética , Flores/genética , Oryza/genética , Proteínas de Plantas/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutação/genética , Oryza/crescimento & desenvolvimento , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Células-Tronco/citologia
5.
Scand J Immunol ; : e13399, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073054

RESUMO

Oral mucositis (OM) is a severe side effect of anti-cancer therapy, with limited available treatments. Mesenchymal stem cells (MSCs) and their secreted extracellular vesicles (EVs) have demonstrated effective protection against OM. However, the underlying mechanism remains elusive. In the current study, we purified EVs secreted by human umbilical cord MSCs (hUC-MSC-EVs) and investigated their role in lipopolysaccharide (LPS)-induced human oral keratinocytes (HOKs). We observed that treatment with hUC-MSC-EVs significantly reduced the inflammatory response of HOKs to LPS induction. Through small RNA-seq using miRNAs extracted from hUC-MSC-EVs, we identified hsa-let-7e-5p as one of the most highly expressed miRNAs. Bioinformatic analysis data indicated that hsa-let-7e-5p may inhibit the NF-κB signalling pathway by targeting TAB2. Overexpression of the hsa-let-7e-5p inhibitor significantly attenuated the anti-inflammatory effect of hUC-MSC-EVs in LPS-induced HOKs, which could be reversed by the knockdown of TAB2. In addition, we administered hUC-MSC-EVs in a hamster model for OM and observed that these EVs alleviated OM phenotypes. Taken together, our observations suggest that hsa-let-7e-5p in hUC-MSC-EVs could protect the oral mucosa from OM by repressing TAB2 expression.

6.
EMBO Rep ; 23(6): e53608, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437868

RESUMO

Elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been frequently reported in malignant melanoma suggesting that XIAP renders apoptosis resistance and thereby supports melanoma progression. Independent of its anti-apoptotic function, XIAP mediates cellular inflammatory signalling and promotes immunity against bacterial infection. The pro-inflammatory function of XIAP has not yet been considered in cancer. By providing detailed in vitro analyses, utilising two independent mouse melanoma models and including human melanoma samples, we show here that XIAP is an important mediator of melanoma neutrophil infiltration. Neutrophils represent a major driver of melanoma progression and are increasingly considered as a valuable therapeutic target in solid cancer. Our data reveal that XIAP ubiquitylates RIPK2, involve TAB1/RIPK2 complex and induce the transcriptional up-regulation and secretion of chemokines such as IL8, that are responsible for intra-tumour neutrophil accumulation. Alteration of the XIAP-RIPK2-TAB1 inflammatory axis or the depletion of neutrophils in mice reduced melanoma growth. Our data shed new light on how XIAP contributes to tumour growth and provides important insights for novel XIAP targeting strategies in cancer.


Assuntos
Proteínas Inibidoras de Apoptose , Melanoma , Infiltração de Neutrófilos , Neoplasias Cutâneas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Modelos Animais de Doenças , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/imunologia , Interleucina-8/biossíntese , Melanoma/genética , Melanoma/imunologia , Camundongos , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
7.
Fish Shellfish Immunol ; 145: 109359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184182

RESUMO

The MAPK pathway is the common intersection of signal transduction pathways such as inflammation, differentiation and proliferation and plays an important role in the process of antiviral immunity. Streptococcus agalactiae will have a great impact on tilapia aquaculture, so it is necessary to study the immune response mechanism of tilapia to S. agalactiae. In this study, we isolated the cDNA sequences of TAK1, TAB1 and TAB2 from Nile tilapia (Oreochromis niloticus). The TAK1 gene was 3492 bp in length, contained an open reading frame (ORF) of 1809 bp and encoded a polypeptide of 602 amino acids. The cDNA sequence of the TAB1 gene was 4001 bp, and its ORF was 1491 bp, which encoded 497 amino acids. The cDNA sequence of the TAB2 gene was 4792 bp, and its ORF was 2217 bp, encoding 738 amino acids. TAK1 has an S_TKc domain and a coiled coil structure; the TAB1 protein structure contains a PP2C_SIG domain and a conserved PYVDXA/TXF sequence model; and TAB2 contains a CUE domain, a coiled coil domain and a Znf_RBZ domain. Homology analysis showed that TAK1 and TAB1 had the highest homology with Neolamprologus brichardi, and TAB2 had the highest homology with Simochromis diagramma (98.28 %). In the phylogenetic tree, TAK1, TAB1 and TAB2 formed a large branch with other scleractinian fishes. The tissue expression analysis showed that the expression of TAK1, TAB1 and TAB2 was highest in the muscle. The expression of TAK1, TAB1 and TAB2 was significantly induced in most of the tested tissues after stimulation with LPS, Poly I:C and S. agalactiae. The subcellular localization results showed that TAK1 was located in the cytoplasm, and TAB1 and TAB2 had certain distributions in the cytoplasm and nucleus. Coimmunoprecipitation (Co-IP) results showed that TRAF6 did not interact with the TAK1 protein but interacted with TAB2, while TAB1 did not interact with P38γ but interacted with TAK1. There was also an interaction between TAK1 and TAB2.


Assuntos
Ciclídeos , Doenças dos Peixes , Animais , Filogenia , DNA Complementar , Transdução de Sinais , Aminoácidos/metabolismo , Streptococcus agalactiae/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica
8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431678

RESUMO

Nuclear factor κB (NF-κB)-mediated signaling pathway plays a crucial role in the regulation of inflammatory process, innate and adaptive immune responses. The hyperactivation of inflammatory response causes host cell death, tissue damage, and autoinflammatory disorders, such as sepsis and inflammatory bowel disease. However, how these processes are precisely controlled is still poorly understood. In this study, we demonstrated that ankyrin repeat and suppressor of cytokine signaling box containing 1 (ASB1) is involved in the positive regulation of inflammatory responses by enhancing the stability of TAB2 and its downstream signaling pathways, including NF-κB and mitogen-activated protein kinase pathways. Mechanistically, unlike other members of the ASB family that induce ubiquitination-mediated degradation of their target proteins, ASB1 associates with TAB2 to inhibit K48-linked polyubiquitination and thereby promote the stability of TAB2 upon stimulation of cytokines and lipopolysaccharide (LPS), which indicates that ASB1 plays a noncanonical role to further stabilize the target protein rather than induce its degradation. The deficiency of Asb1 protects mice from Salmonella typhimurium- or LPS-induced septic shock and increases the survival of mice. Moreover, Asb1-deficient mice exhibited less severe colitis and intestinal inflammation induced by dextran sodium sulfate. Given the crucial role of ASB proteins in inflammatory signaling pathways, our study offers insights into the immune regulation in pathogen infection and inflammatory disorders with therapeutic implications.


Assuntos
Colite/imunologia , NF-kappa B/imunologia , Processamento de Proteína Pós-Traducional , Infecções por Salmonella/imunologia , Choque Séptico/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Colite/induzido quimicamente , Colite/genética , Colite/mortalidade , Sulfato de Dextrana , Genes Reporter , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos , Luciferases/genética , Luciferases/imunologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Ligação Proteica , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/mortalidade , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Choque Séptico/induzido quimicamente , Choque Séptico/genética , Choque Séptico/mortalidade , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Análise de Sobrevida , Ubiquitinação
9.
Brain Inj ; 38(11): 918-927, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38828532

RESUMO

BACKGROUND: Cognitive impairment is a severe complication of acute respiratory distress syndrome (ARDS). Emerging studies have revealed the effects of pyrrolidine dithiocarbamate (PDTC) on improving surgery-induced cognitive impairment. The major aim of the study was to investigate whether PDTC protected against ARDS-induced cognitive dysfunction and to identify the underlying mechanisms involved. METHODS: The rat model of ARDS was established by intratracheal instillation of lipopolysaccharide (LPS), followed by treatment with PDTC. The cognitive function of rats was analyzed by the Morris Water Maze, and pro-inflammatory cytokines were assessed by quantitative real-time PCR, enzyme-linked immunosorbent assay, and western blot assays. A dual-luciferase reporter gene assay was performed to identify the relationship between miR-181c and its target gene, TAK1 binding protein 2 (TAB2). RESULTS: The results showed that PDTC improved cognitive impairment and alleviated neuroinflammation in the hippocampus in LPS-induced ARDS model. Furthermore, we demonstrated that miR-181c expression was downregulated in the hippocampus of the ARDS rats, which was restored by PDTC treatment. In vitro studies showed that miR-181c alleviated LPS-induced pro-inflammatory response by inhibiting TAB2, a critical molecule in the nuclear factor (NF)-κB signaling pathway. CONCLUSION: PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation, providing a potential opportunity for the treatment of this disease.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Lipopolissacarídeos , MicroRNAs , NF-kappa B , Pirrolidinas , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório , Tiocarbamatos , Animais , MicroRNAs/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Ratos , Tiocarbamatos/farmacologia , Tiocarbamatos/uso terapêutico , NF-kappa B/metabolismo , Masculino , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
10.
Cardiol Young ; 34(2): 459-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38167265

RESUMO

Myxomatous degeneration of one or more cardiac valves has been reported in trisomy 18, Noonan, Marfan, and Ehlers-Danlos syndromes. 6q25.1 (TAB2) deletion is one of the notable causes for myxomatous degeneration of cardiac valves. Whole exome sequencing must be considered in these subsets of cases for effective prenatal counselling. A 23-week fetus presented with cardiomegaly, redundant myxomatous tricuspid, mitral valve leaflets, thickened pulmonary valve, and bicuspid aortic valves detected to have 6q25.1 (TAB2) deletion was presented with literature review.


Assuntos
Síndrome de Ehlers-Danlos , Valva Pulmonar , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Feto , Valva Mitral
11.
J Lipid Res ; 64(7): 100382, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116711

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide, without any Food and Drug Administration-approved pharmacological intervention in clinic. Trim38, as an important member of the TRIM (tripartite motif-containing) family, was largely reported to be involved in the regulation of innate immune and inflammatory responses. However, the functional roles of TRIM38 in NAFLD remain largely unknown. Here, the expression of TRIM38 was first detected in liver samples of both NAFLD mice model and patients diagnosed with NAFLD. We found that TRIM38 expression was downregulated in NAFLD liver tissues compared with normal liver tissues. Genetic Trim38-KO in vivo showed that TRIM38 depletion deteriorated the high-fat diet and high fat and high cholesterol diet-induced hepatic steatosis and high fat and high cholesterol diet-induced liver inflammation and fibrosis. In particular, we found that the effects of hepatocellular lipid accumulation and inflammation induced by palmitic acid and oleic acid were aggravated by TRIM38 depletion but mitigated by TRIM38 overexpression in vitro. Mechanically, RNA-Seq analysis demonstrated that TRIM38 ameliorated nonalcoholic steatohepatitis progression by attenuating the activation of MAPK signaling pathway. We further found that TRIM38 interacted with transforming growth factor-ß-activated kinase 1 binding protein 2 and promoted its protein degradation, thus inhibiting the transforming growth factor-ß-activated kinase 1-MAPK signal cascades. In summary, our study revealed that TRIM38 could suppress hepatic steatosis, inflammatory, and fibrosis in NAFLD via promoting transforming growth factor-ß-activated kinase 1 binding protein 2 degradation. TRIM38 could be a potential target for NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
BMC Cancer ; 23(1): 1101, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953246

RESUMO

TAB182 participates in DNA damage repair and radio-/chemosensitivity regulation in various tumors, but its role in tumorigenesis and therapeutic resistance in breast cancer remains unclear. In the current paper, we observed that triple-negative Breast Cancer (TNBC), a highly aggressive type of breast cancer, exhibits a lower expression of TAB182. TAB182 knockdown stimulates the proliferation, migration, and invasion of TNBC cells. Our study first obtained RNA-seq data to explore the cellular functions mediated by TAB182 at the genome level in TNBC cells. A transcriptome analysis and in vitro experiments enabled us to identify that TAB182 downregulation drives the enhanced properties of cancer stem-like cells (CSCs) in TNBC cells. Furthermore, TAB182 deletion contributes to the resistance of cells to olaparib or cisplatin, which can be rescued by silencing GLI2, a gene downstream of cancer stemness-related signaling pathways. Our results reveal a novel function of TAB182 as a potential negative regulator of cancer stem-like properties and drug sensitivity in TNBC cells, suggesting that TAB182 may be a tumor suppressor gene and is associated with increased therapeutic benefits for TNBC patients.


Assuntos
Células-Tronco Neoplásicas , Proteína 1 de Ligação a Repetições Teloméricas , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genética
13.
Virol J ; 20(1): 291, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072991

RESUMO

Coxsackievirus Group B type 5 (CVB5), an important pathogen of hand-foot-mouth disease, is also associated with neurological complications and poses a public health threat to young infants. Among the CVB5 proteins, the nonstructural protein 3D, known as the Enteroviral RNA-dependent RNA polymerase, is mainly involved in viral genome replication and transcription. In this study, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that interacted with CVB5 3D polymerase. A total of 116 differentially expressed proteins were obtained. Gene Ontology analysis identified that the proteins were involved in cell development and cell adhesion, distributed in the desmosome and envelope, and participated in GTPase binding. Kyoto Encyclopedia of Genes and Genomes analysis further revealed they participated in nerve diseases, such as Parkinson disease. Among them, 35 proteins were significantly differentially expressed and the cellular protein TGF-BATA-activated kinase1 binding protein 1 (TAB1) was found to be specifically interacting with the 3D polymerase. 3D polymerase facilitated the entry of TAB1 into the nucleus and down-regulated TAB1 expression via the lysosomal pathway. In addition, TAB1 inhibited CVB5 replication via inducing inflammatory factors and activated the NF-κB pathway through IκBα phosphorylation. Moreover, the 90-96aa domain of TAB1 was an important structure for the function. Collectively, our findings demonstrate the mechanism by which cellular TAB1 inhibits the CVB5 replication via activation of the host innate immune response, providing a novel insight into the virus-host innate immunity.


Assuntos
Doença de Mão, Pé e Boca , NF-kappa B , Humanos , NF-kappa B/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Imunidade Inata , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
14.
Cell Biol Toxicol ; 39(3): 703-717, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34331613

RESUMO

Epidemiological evidence has shown that fine particulate matter (PM2.5)-triggered inflammatory cascades are pivotal causes of chronic obstructive pulmonary disease (COPD). However, the specific molecular mechanism involved in PM2.5-induced COPD has not been clarified. Herein, we found that PM2.5 significantly downregulated miR-149-5p and activated the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways and generated the inflammatory response in COPD mice and in human bronchial epithelial (BEAS-2B) cells. We determined that increased expression of interleukin-1ß (IL-1ß), IL-6, IL-8, and tumor necrosis factor-α (TNF-α) induced by PM2.5 was associated with decreased expression of miR-149-5p. The loss- and gain-of-function approach further confirmed that miR-149-5p could inhibit PM2.5-induced cell inflammation in BEAS-2B cells. The double luciferase reporter assay showed that miR-149-5p directly targeted TGF-beta-activated kinase 1 binding protein 2 (TAB2), which regulates the MAPK and NF-κB signaling pathways. We showed that miR-149-5p mediated the inflammatory response by targeting the 3'-UTR sequence of TAB2 and that it subsequently weakened the TAB2 promotor effect via the MAPK and NF-κB signaling pathways in BEAS-2B cells exposed to PM2.5. Thus, miR-149-5p may be a key factor in PM2.5-induced COPD. This study improves our understanding of the molecular mechanism of COPD.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Material Particulado/toxicidade , Inflamação/genética , Inflamação/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
15.
Mol Biol Rep ; 50(4): 3073-3083, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36689051

RESUMO

BACKGROUND: TAB182 is overexpressed in cancerous tissues and correlated with poor overall survival in lung cancer patients. Mechanistically, TAB182 participates in DNA damage repair and endows tumour cells with radio- and chemoresistance. However, its role in non-small cell lung cancer (NSCLC) remains unclear. METHODS AND RESULTS: Cells with stable TAB182 knockdown (KD) were generated using A549 NSCLC cells, and we demonstrated that depleting TAB182 inhibits cell EMT, proliferation, colony formation, migration and invasion. Analysis of the TCGA database showed a positive correlation between TAB182 and EGFR, a well-established NSCLC oncoprotein. Then, we verified that silencing TAB182 decreases EGFR expression at both the mRNA and protein levels. Moreover, both TAB182 and EGFR were reported to restore ionizing radiation (IR)-triggered DNA damage. We validated that IR elevates the protein level of EGFR and that silencing TAB182 can alleviate IR-induced EGFR upregulation. Furthermore, overexpressing EGFR abrogates the inhibitory effects of TAB182 KD on EMT, migration, and invasion in A549 cells. CONCLUSIONS: Our data demonstrated that EGFR expression is regulated by TAB182 and downregulation of TAB182 has a novel function to repress EMT, migration and invasion by decreasing EGFR, indicating TAB182 could regulate the malignant progression of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/metabolismo
16.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138506

RESUMO

Boron presents an important role in chemistry, biology, and materials science. Diatomic transition-metal borides (MBs) are the building blocks of many complexes and materials, and they present unique electronic structures with interesting and peculiar properties and a variety of bonding schemes which are analyzed here. In the first part of this paper, we present a review on the available experimental and theoretical studies on the first-row-transition-metal borides, i.e., ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, CuB, and ZnB; the second-row-transition-metal borides, i.e., YB, ZrB, NbB, MoB, TcB, RuB, RhB, PdB, AgB, and CdB; and the third-row-transition-metal borides, i.e., LaB, HfB, TaB, WB, ReB, OsB, IrB, PtB, AuB, and HgB. Consequently, in the second part, the second- and third-row MBs are studied via DFT calculations using the B3LYP, TPSSh, and MN15 functionals and, in some cases, via multi-reference methods, MRCISD+Q, in conjunction with the aug-cc-pVQZ-PPM/aug-cc-pVQZB basis sets. Specifically, bond distances, dissociation energies, frequencies, dipole moments, and natural NPA charges are reported. Comparisons between MB molecules along the three rows are presented, and their differences and similarities are analyzed. The bonding of the diatomic borides is also described; it is found that, apart from RhB(X1Σ+), which was just recently found to form quadruple bonds, RuB(X2Δ) and TcB(X3Σ-) also form quadruple σ2σ2π2π2 bonds in their X states. Moreover, to fill the gap existing in the current literature, here, we calculate the TcB molecule.

17.
Infect Immun ; 90(5): e0012022, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35416706

RESUMO

The innate immune response is the first line of defense against pathogen infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammation may cause inflammatory and autoimmune diseases. MicroRNAs (miRNAs) are a group of small noncoding RNAs, and accumulating evidence has shown that in mammals, they can act as negative regulators that participate in the regulation of inflammation and immune responses. However, the miRNA-mediated immune regulation networks in the inflammatory responses of lower vertebrates are largely unknown. In this study, we report an miRNA, miR-132, identified from miiuy croaker, that acts as a negative regulator in the host's bacterium-induced inflammatory response. We found that miR-132 expression was dramatically increased upon infection by the Gram-negative bacterium Vibrio harveyi and lipopolysaccharide (LPS). Inducible miR-132 inhibits the production of inflammatory cytokines by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), transforming growth factor-activated protein kinase 1 (TAK1), and TAK1 binding protein 1 (TAB1), thus avoiding an excessive inflammatory response. Furthermore, we demonstrate that miR-132 modulates the inflammatory response through a TRAF6-, TAK1-, and TAB1-mediated NF-κB signaling pathway. These results collectively reveal that miR-132 plays a negative regulatory role in the host antibacterial immune response, which will help to gain insight into the intricate network of host resistance to pathogen infection in lower vertebrates.


Assuntos
MicroRNAs , Fator 6 Associado a Receptor de TNF , Animais , Citocinas/metabolismo , Peixes/genética , Peixes/metabolismo , Inflamação , Mamíferos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
18.
Am J Med Genet A ; 188(12): 3510-3515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36000780

RESUMO

Haplo-insufficiency of the TGFß-activated kinase 1 binding protein 2 (TAB2) gene is associated with short stature, facial dysmorphisms, connective tissue abnormalities, hearing loss, and cardiac disease. Skeletal dysplasia and sacral dimples are also found in a minority of patients. Here, we describe a 3-generation family with caudal appendage, other sacral anomalies, and skeletal abnormalities including hypoplasia of the iliac wings and scapulae, fusion of the carpal bones and stenosis of the spinal canal, as well as a remarkable course of prenatally-detected cardiomyopathy with characteristics changing over time. Genetic analysis showed a heterozygous nonsense variant in the TAB2 gene.


Assuntos
Cardiomiopatias , Osteocondrodisplasias , Gravidez , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética
19.
Am J Med Genet A ; 188(11): 3331-3342, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35971781

RESUMO

TAB2 is a gene located on chromosome 6q25.1 and plays a key role in development of the heart. Existing literature describes congenital heart disease as a common recognized phenotype of TAB2 gene variants, with evidence of a distinct syndromic phenotype also existing beyond this. Here we describe 14 newly identified individuals with nine novel, pathogenic TAB2 variants. The majority of individuals were identified through the Deciphering Developmental Disorders study through trio whole exome sequencing. Eight individuals had de novo variants, the other six individuals were found to have maternally inherited, or likely maternally inherited, variants. Five individuals from the same family were identified following cardiac disease gene panel in the proband and subsequent targeted familial gene sequencing. The clinical features of this cohort were compared to the existing literature. Common clinical features include distinctive facial features, growth abnormalities, joint hypermobility, hypotonia, and developmental delay. Newly identified features included feeding difficulties, sleep problems, visual problems, genitourinary abnormality, and other anatomical variations. Here we report 14 new individuals, including novel TAB2 variants, in order to expand the emerging syndromic clinical phenotype and provide further genotype-phenotype correlation.


Assuntos
Cardiopatias Congênitas , Deficiência Intelectual , Proteínas Adaptadoras de Transdução de Sinal/genética , Criança , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Cardiopatias Congênitas/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Sequenciamento do Exoma
20.
J Biochem Mol Toxicol ; 36(7): e23060, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35355364

RESUMO

In this study, we explored to detect the effects and mechanism of bone-marrow-derived mesenchymal stem cells (BMSCs) on ventilator-induced lung injury (VILI). We transplanted BMSCs in mice and then induced VILI using mechanical ventilation (MV) treatment. The pathological changes, the content of PaO2 and PaCO2 , wet/dry weight ratio (W/D) of the lung, levels of tumor necrosis factor-α and interleukin-6 in bronchoalveolar lavage fluid, and apoptosis were detected. The autophagy-associated factor p62, LC3, and Beclin-1 expression were analyzed by western blot. The quantitative polymerase chain reaction was applied to detect abnormally expressed microRNAs, including miR-155-5p. Subsequently, we overexpressed miR-155-5p in VILI mice to detect the effects of miR-155-5p on MV-induced lung injury. Then, we carried out bioinformatics analysis to verify the BMSCs-regulated miR-155-5p that target messenger RNA. It was observed that BMSCs transplantation mitigated the severity of VILI in mice. BMSCs transplantation reduced lung inflammation, strengthened the arterial oxygen partial pressure, and reduced apoptosis and the W/D of the lung. BMSCs promoted autophagy of pulmonary endothelial cells accompanied by decreased p62 and increased LC3 II/I and Beclin-1. BMSCs increased the levels of miR-155-5p in VILI mice. Overexpression of miR-155-5p alleviated lung injury in VILI mice following reduced apoptosis and increased autophagy. Finally, TAB2 was identified as a downstream target of miR-155-5p and regulated by miR-155-5p. BMSCs may protect lung tissues from MV-induced injury, inhibit lung inflammation, promote autophagy through upregulating of miR-155-5p.


Assuntos
Transplante de Células-Tronco Mesenquimais , MicroRNAs , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Autofagia , Proteína Beclina-1 , Células Endoteliais/metabolismo , Camundongos , MicroRNAs/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA