Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(3): 516-530.e9, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36738738

RESUMO

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Assuntos
Inflamação , Fosforilação Oxidativa , Humanos , Camundongos , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Homeostase , Lipídeos , Tecido Adiposo/metabolismo
2.
Cell ; 171(5): 1082-1093.e13, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29033127

RESUMO

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Quadruplex G , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , DNA Mitocondrial/química , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Modelos Moleculares , Elongação da Transcrição Genética , Fatores de Transcrição/química , Terminação da Transcrição Genética
3.
Cell ; 171(5): 1072-1081.e10, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149603

RESUMO

Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/química , Metiltransferases/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Fatores de Transcrição/química , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Bacteriófago T7/enzimologia , Bacteriófago T7/metabolismo , DNA Mitocondrial/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Metiltransferases/isolamento & purificação , Metiltransferases/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Immunity ; 55(8): 1386-1401.e10, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931086

RESUMO

Deleterious somatic mutations in DNA methyltransferase 3 alpha (DNMT3A) and TET mehtylcytosine dioxygenase 2 (TET2) are associated with clonal expansion of hematopoietic cells and higher risk of cardiovascular disease (CVD). Here, we investigated roles of DNMT3A and TET2 in normal human monocyte-derived macrophages (MDM), in MDM isolated from individuals with DNMT3A or TET2 mutations, and in macrophages isolated from human atherosclerotic plaques. We found that loss of function of DNMT3A or TET2 resulted in a type I interferon response due to impaired mitochondrial DNA integrity and activation of cGAS signaling. DNMT3A and TET2 normally maintained mitochondrial DNA integrity by regulating the expression of transcription factor A mitochondria (TFAM) dependent on their interactions with RBPJ and ZNF143 at regulatory regions of the TFAM gene. These findings suggest that targeting the cGAS-type I IFN pathway may have therapeutic value in reducing risk of CVD in patients with DNMT3A or TET2 mutations.


Assuntos
Doenças Cardiovasculares , DNA Metiltransferase 3A/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Humanos , Interferons/metabolismo , Macrófagos/metabolismo , Mitocôndrias/genética , Mutação/genética , Nucleotidiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
5.
EMBO J ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39424953

RESUMO

Maintaining mitochondrial homeostasis is crucial for cell survival and organismal health, as evidenced by the links between mitochondrial dysfunction and various diseases, including Alzheimer's disease (AD). Here, we report that lncMtDloop, a non-coding RNA of unknown function encoded within the D-loop region of the mitochondrial genome, maintains mitochondrial RNA levels and function with age. lncMtDloop expression is decreased in the brains of both human AD patients and 3xTg AD mouse models. Furthermore, lncMtDloop binds to mitochondrial transcription factor A (TFAM), facilitates TFAM recruitment to mtDNA promoters, and increases mitochondrial transcription. To allow lncMtDloop transport into mitochondria via the PNPASE-dependent trafficking pathway, we fused the 3'UTR localization sequence of mitochondrial ribosomal protein S12 (MRPS12) to its terminal end, generating a specified stem-loop structure. Introducing this allotropic lncMtDloop into AD model mice significantly improved mitochondrial function and morphology, and ameliorated AD-like pathology and behavioral deficits of AD model mice. Taken together, these data provide insights into lncMtDloop as a regulator of mitochondrial transcription and its contribution to Alzheimer's pathogenesis.

6.
Mol Cell ; 78(3): 382-395.e8, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32183942

RESUMO

N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.


Assuntos
DNA Mitocondrial/metabolismo , Desoxiadenosinas/metabolismo , Metiltransferases/metabolismo , Animais , Metilação de DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxiadenosinas/genética , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Hipóxia/genética , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Trends Genet ; 40(2): 112-114, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38036338

RESUMO

Mitochondrial DNA (mtDNA) is inherited almost exclusively from the maternal lineage. Paternal destruction of either mtDNA or whole mitochondria has been the dominant model for mtDNA transmission. Recently, Lee et al. provided evidence for mitochondrial transcription factor A (TFAM) import sequence regulation as a potential cause for mtDNA depletion in human sperm before fertilization.


Assuntos
Sêmen , Espermatogênese , Masculino , Humanos , Espermatogênese/genética , Espermatozoides/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
8.
EMBO J ; 40(6): e107165, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33619770

RESUMO

Mitochondria contain an autonomous and spatially segregated genome. The organizational unit of their genome is the nucleoid, which consists of mitochondrial DNA (mtDNA) and associated architectural proteins. Here, we show that phase separation is the primary physical mechanism for assembly and size control of the mitochondrial nucleoid (mt-nucleoid). The major mtDNA-binding protein TFAM spontaneously phase separates in vitro via weak, multivalent interactions into droplets with slow internal dynamics. TFAM and mtDNA form heterogenous, viscoelastic structures in vitro, which recapitulate the dynamics and behavior of mt-nucleoids in vivo. Mt-nucleoids coalesce into larger droplets in response to various forms of cellular stress, as evidenced by the enlarged and transcriptionally active nucleoids in mitochondria from patients with the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS). Our results point to phase separation as an evolutionarily conserved mechanism of genome organization.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Mitocôndrias/genética , Progéria/patologia , Linhagem Celular , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Proteínas Mitocondriais/metabolismo , Progéria/genética , Fatores de Transcrição/metabolismo
9.
Arch Biochem Biophys ; 761: 110152, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265693

RESUMO

BACKGROUND AND AIM: Endometriosis is a chronic gynecological inflammatory disease. The mitochondrial DNA copy number (mtDNA CN) and mitochondrial transcription factor A (TFAM) are known to contribute to human pathologies and cancer. Therefore, this study aims to reveal the association of mtDNA CN and TFAM+35G/C (rs1937) polymorphism with the risk of endometriosis in Egyptian females. MATERIALS AND METHODS: This case-control study involved 160 Egyptian females divided into two groups: 80 endometriosis cases and 80 controls. The mtDNA CN was quantified using a real-time quantitative PCR (qPCR), and the TFAM +35G/C SNP (rs1937) was genotyped using the TaqMan allelic discrimination assay technique. RESULTS: The mtDNA CN was markedly decreased in endometriosis cases compared to controls (P < 0. 001). TFAM rs1937 genotypes and allele distributions were all in Hardy-Weinberg equilibrium. The GC genotype and the 'C' allele frequency (P = 0.015 and P = 0.017, respectively) were substantially greater in endometriosis cases. CONCLUSION: Decreased mtDNA CN and the GC genotype of TFAM +35G/C polymorphism were significantly associated with the risk of endometriosis in Egyptian females.

10.
Clin Sci (Lond) ; 138(13): 777-795, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860674

RESUMO

Renal tubular injury is considered as the main pathological feature of acute kidney injury (AKI), and mitochondrial dysfunction in renal tubular cells is implicated in the pathogenesis of AKI. The estrogen-related receptor γ (ERRγ) is a member of orphan nuclear receptors which plays a regulatory role in mitochondrial biosynthesis, energy metabolism and many metabolic pathways. Online datasets showed a dominant expression of ERRγ in renal tubules, but the role of ERRγ in AKI is still unknown. In the present study, we investigated the role of ERRγ in the pathogenesis of AKI and the therapeutic efficacy of ERRγ agonist DY131 in several murine models of AKI. ERRγ expression was reduced in kidneys of AKI patients and AKI murine models along with a negative correlation to the severity of AKI. Consistently, silencing ERRγ in vitro enhanced cisplatin-induced tubular cells apoptosis, while ERRγ overexpression in vivo utilizing hydrodynamic-based tail vein plasmid delivery approach alleviated cisplatin-induced AKI. ERRγ agonist DY131 could enhance the transcriptional activity of ERRγ and ameliorate AKI in various murine models. Moreover, DY131 attenuated the mitochondrial dysfunction of renal tubular cells and metabolic disorders of kidneys in AKI, and promoted the expression of the mitochondrial transcriptional factor A (TFAM). Further investigation showed that TFAM could be a target gene of ERRγ and DY131 might ameliorate AKI by enhancing ERRγ-mediated TFAM expression protecting mitochondria. These findings highlighted the protective effect of DY131 on AKI, thus providing a promising therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Receptores de Estrogênio , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Animais , Receptores de Estrogênio/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , Doenças Metabólicas/metabolismo , Apoptose , Modelos Animais de Doenças , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cisplatino , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
11.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37084167

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Assuntos
Colite Ulcerativa , Genisteína , Animais , Ratos , Genisteína/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Caspase 3 , Caspase 9 , Caspase 8 , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Biogênese de Organelas , Proteína X Associada a bcl-2
12.
Cell Biol Int ; 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39428668

RESUMO

Breast cancer has become the leading cause of death in women. Membrane associated ring-CH-type finger 1 (MARCHF1) is associated with the development of various types of cancer, but the exact role of MARCHF1 in breast cancer remains unclear. In our study, the higher MARCHF1 expression was observed in tumor samples of patients with breast cancer and then the role of MARCHF1 in breast cancer was further evaluated. Overexpression of MARCHF1 contributed to proliferation of cancer cells and inhibition of oxidative stress. Knockdown of MARCHF1 reduced breast cancer cell proliferation, increased mitochondrial dysfunction induced by oxidative stress, eventually aggravating cell death. In vivo, MARCHF1 promoted the tumor growth and oppositely, MARCHF1 silencing suppressed the tumor development. Moreover, MARCHF1 interacted with repressor Element-1 silencing transcription factor (REST) and facilitated its ubiquitylation and degradation. Subsequently, REST negatively regulated the transcription of mitochondrial transcription factor A (TFAM). The subcutaneous tumor formation assay in nude mice also supported these conclusions. In details, knockdown of MARCHF1 upregulated the protein expression of REST and downregulated the mRNA level of TFAM. On the contrary, MARCHF1 overexpression exhibited opposite effects. Thus, MARCHF1 is conducive to the progression of breast cancer via promoting the ubiquitylation and degradation of RSET and then the transcription of TFAM. Downregulating MARCHF1 could provide a novel direction for treating breast cancer.

13.
Immun Ageing ; 21(1): 30, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745313

RESUMO

BACKGROUND: The accumulation of senescent microglia has been highlighted as a critical contributor to the progression of tauopathies. Irisin, a muscle-derived hormone produced by the proteolytic cleavage of Fibronectin-domain III containing 5 (FNDC5), mediates the pleiotropic effects of exercise on the physical body. Herein, we investigate the potential role of irisin in microglial senescence in tauopathies. METHODS: To model tauopathies both in vivo and in vitro, we utilized P301S tau transgenic mice and tau K18 fibril-treated microglia BV2 cells, respectively. We first examined the expression of the irisin expression and senescence phenotypes of microglia in tauopathies. Subsequently, we investigated the impact of irisin on microglial senescence and its underlying molecular mechanisms. RESULT: We observed a reduction in irisin levels and an onset of premature microglial senescence both in vivo and in vitro. Irisin administration was found to counteract microglial senescence and ameliorate cognitive decline in P301S mice. Mechanistically, irisin effectively inhibited microglial senescence by stimulating the expression of mitochondrial transcription factor A (TFAM), a master regulator of mitochondrial respiratory chain biogenesis, thereby enhancing mitochondrial oxidative phosphorylation (OXPHOS). Silencing TFAM eliminated the inhibitory effect of irisin on microglial senescence as well as the restorative effect of irisin on mitochondrial OXPHOS. Furthermore, the SIRT1/PGC1α signaling pathway appeared to be implicated in irisin-mediated upregulation of TFAM. CONCLUSION: Taken together, our study revealed that irisin mitigated microglial senescence via TFAM-driven mitochondrial biogenesis, suggesting a promising new avenue for therapeutic strategies targeting tauopathies.

14.
Zygote ; 32(1): 14-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047391

RESUMO

The aim of this research was to investigate the effect of Coenzyme Q10 (CoQ10) on the expression of the Transcription Factor A Mitochondrial (Tfam) gene and mtDNA copy number in preantral follicles (PFs) of mice during in vitro culture. To conduct this experimental study, PFs were isolated from 14-day-old National Medical Research Institute mice and cultured in the presence of 50 µm CoQ10 for 12 days. On the 12th day, human chorionic gonadotropin was added to stimulate ovulation. The fundamental parameters, including preantral follicle developmental rate and oocyte maturation, were evaluated. Additionally, the Tfam gene expression and mtDNA copy number of granulosa cells and oocytes were assessed using the real-time polymerase chain reaction. The results revealed that CoQ10 significantly increased the diameter of PFs, survival rate, antrum formation, and metaphase II (MII) oocytes (P < 0.05). Moreover, in the CoQ10-treated groups, the Tfam gene expression in granulosa cells and oocytes increased considerably compared with the control group. The mtDNA copy number of granulosa cells and oocytes cultured in the presence of CoQ10 was substantially higher compared with the control groups (P < 0.05). The addition of CoQ10 to the culture medium enhances the developmental competence of PFs during in vitro culture by upregulating Tfam gene expression and increasing mtDNA copy number in oocyte and granulosa cells.


Assuntos
Biogênese de Organelas , Folículo Ovariano , Ubiquinona/análogos & derivados , Feminino , Humanos , Animais , Camundongos , Folículo Ovariano/fisiologia , Oócitos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
15.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126100

RESUMO

Acute myeloid leukemia (AML) has a poor survival rate for both pediatric and adult patients due to its frequent relapse. To elucidate the bioenergetic principle underlying AML relapse, we investigated the transcriptional regulation of mitochondrial-nuclear dual genomes responsible for metabolic plasticity in treatment-resistant blasts. Both the gain and loss of function results demonstrated that NFκB2, a noncanonical transcription factor (TF) of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) family, can control the expression of TFAM (mitochondrial transcription factor A), which is known to be essential for metabolic biogenesis. Furthermore, genetic tracking and promoter assays revealed that NFκB2 is in the mitochondria and can bind the specific "TTGGGGGGTG" region of the regulatory D-loop domain to activate the light-strand promoter (LSP) and heavy-strand promoter 1 (HSP1), promoters of the mitochondrial genome. Based on our discovery of NFκB2's novel function of regulating mitochondrial-nuclear dual genomes, we explored a novel triplet therapy including inhibitors of NFκB2, tyrosine kinase, and mitochondrial ATP synthase that effectively eliminated primary AML blasts with mutations of the FMS-related receptor tyrosine kinase 3 (FLT3) and displayed minimum toxicity to control cells ex vivo. As such, effective treatments for AML must include strong inhibitory actions on the dual genomes mediating metabolic plasticity to improve leukemia prognosis.


Assuntos
Genoma Mitocondrial , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Regulação Leucêmica da Expressão Gênica
16.
Cancer Sci ; 114(4): 1464-1478, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601865

RESUMO

Mycoplasma is widespread in various hosts and may cause various diseases in animals. Interestingly, the occurrence of mycoplasma infection was observed in many tumor types. However, the mechanism regulating its infection is far from clear. We unexpectedly found that the knockdown of mitochondrial transcription factor A (TFAM) remarkably enhanced mycoplasma infection in hepatocellular carcinoma (HCC) cells. More importantly, we found that mycoplasma infection facilitated by TFAM knockdown significantly promoted HCC cell metastasis. Mycoplasma infection was further found to be positively correlated with poor prognosis in patients with HCC. Mechanistically, the decreased TFAM expression upregulated the transcription factor Sp1 to increase the expression level of Annexin A2 (ANXA2), which was reported to interact with membrane protein of mycoplasma. Moreover, we found that mycoplasma infection enhanced by the TFAM downregulation promoted HCC migration and invasion by activating the nuclear factor-κB signaling pathway. The downregulation of TFAM enhanced mycoplasma infection in HCC cells and promoted HCC cell metastasis. Our study contributes to the understanding of the pathological role of mycoplasma infection and provides supporting evidence that targeting TFAM could be a potential strategy for the treatment of HCC with mycoplasma infection.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Infecções por Mycoplasma , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Infecções por Mycoplasma/genética , Metástase Neoplásica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Humanos
17.
J Cell Sci ; 134(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34651186

RESUMO

Mutation of the isocitrate dehydrogenase 1 (IDH1) gene leads to the production of oncometabolite D-2-hydroxyglutarate (2-HG) from α-ketoglutarate and is associated with better prognosis in glioma. As Yes-associated protein 1 (YAP1) is an important regulator of tumor progression, its role in glioma expressing IDH1 with an R132H mutation was investigated. Diminished nuclear levels of YAP1 in IDH1 mutant glioma tissues and cell lines were accompanied by decreased levels of mitochondrial transcription factor A (TFAM). Luciferase reporter assays and chromatin immunoprecipitation were used to investigate the functionality of the TEAD2-binding site on the TFAM promoter in mediating its YAP1-dependent expression. YAP1-dependent mitochondrial fragmentation and ROS generation were accompanied by decreased telomerase reverse transcriptase (TERT) levels and increased mitochondrial TERT localization in IDH1 R132H cells. Treatment with the Src kinase inhibitor bosutinib, which prevents extranuclear shuttling of TERT, further elevated ROS in IDH1 R132H cells and triggered apoptosis. Importantly, bosutinib treatment also increased ROS levels and induced apoptosis in IDH1 wild-type cells when YAP1 was concurrently depleted. These findings highlight the involvement of YAP1 in coupling mitochondrial dysfunction with mitochondrial shuttling of TERT to constitute an essential non-canonical function of YAP1 in the regulation of redox homeostasis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Glioma , Dinâmica Mitocondrial , Proteínas de Sinalização YAP/genética , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Telomerase
18.
Cell Biol Int ; 47(8): 1453-1465, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37132450

RESUMO

Although starvation stress can alter the homeostasis of mitochondria and promote autophagy, there is still a lack of research focusing on the connection between them. In this study, we found that, accompanied by the upregulation of autophagy flux, the membrane mitochondrial potential (MMP), the content of reactive oxygen species (ROS), the production of ATP, and the copy number of mitochondrial DNA (mt-DNA) were changed when limiting amino acids supply. We screened and analyzed altered genes related to mitochondrial homeostasis under starvation stress and verified that the expression of mitochondrial transcription factor A (TFAM) was prominently upregulated. Inhibition of TFAM led to the change of mitochondrial function and homeostasis, caused the decrease of SQSTM1 mRNA stability and ATG101 protein level and restricted the autophagy process of cells under amino acid deficient conditions. In addition, the TFAM knockdown and starvation treatment aggravated the DNA damage and reduced proliferation rate of tumor cells. Therefore, our data shows the correlation between mitochondria homeostasis and autophagy, reveals the effect of TFAM on autophagy flux under starvation stress and provides experimental basis for the combined starvation therapy targeting mitochondria to inhibit tumor growth.


Assuntos
Autofagia , Mitocôndrias , Estabilidade de RNA , Proliferação de Células/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Humanos
19.
Microbiol Immunol ; 67(6): 303-313, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932814

RESUMO

Human cytomegalovirus (HCMV) infection of monocytes results in the production of inflammatory cytokine through inflammasome. However, the mechanism of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in HCMV infection remains unclear. In this study, HCMV infection promoted the increase of mitochondrial fusion and caused mitochondrial dysfunction in THP-1 cells, including excessive reactive oxygen species production and decreased mitochondrial membrane potential (Δψm). Meanwhile, the expression of mitochondrial DNA (mtDNA)-binding protein TFAM (transcription factor A, mitochondrial) was decreased and mtDNA content in the cytoplasm was increased. Knockdown of TFAM caused an increase in mtDNA copy number in the cytoplasm and resulted in elevated NLRP3 expression, active caspase-1, and mature IL-1ß. After a 3 h treatment with MCC950, an NLRP3 inhibitor, the increase of cleaved caspase-1 and mature IL-1ß were suppressed. Besides, overexpression of TFAM inhibited the expression of NLRP3, cleaved caspase-1, and mature IL-1ß. In addition, knockdown of NLRP3 inhibited the IL-1ß process after HCMV infection. mtDNA-deficient cells showed a limited ability to produce NLRP3 and process IL-1ß after HCMV infection. In conclusion, HCMV infection of THP-1 cells resulted in decreased mitochondrial TFAM protein expression and increased mtDNA release into the cytoplasm, which eventually led to the activation of NLRP3 inflammasome.


Assuntos
Infecções por Citomegalovirus , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Caspase 1/metabolismo , Citosol , DNA Mitocondrial/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
20.
Ecotoxicol Environ Saf ; 258: 114977, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146387

RESUMO

BACKGROUND: Nonylphenol (NP) is a common environmental endocrine disruptor that is associated with the development of cardiovascular disease. However, the toxic effect of NP on mitochondria in the heart of offspring to exposed individuals remains exclusive. OBJECTIVE: To investigate whether perinatal NP exposure causes mitochondrial damage in the hearts of offspring of exposed individuals and determine its mechanism of action through both animal and cell experiments. METHODS AND RESULTS: For the in vivo experiment, pregnant rats were randomly divided into four groups: the control group (corn oil, C), low dose group (2.5 mg/kg/day, L-NP group), medium dose group (50 mg/kg/day, M-NP group), and high dose group (100 mg/kg/day, H-NP group), with 12 rats in each group. The NP concentration in the hearts of offspring at PND21 and PND90 increased with the increase of the NP dose. Perinatal NP exposure induced a gradual increase in systolic blood pressure in offspring at PND90. In the H-NP group, there was a high degree of inflammatory cell infiltration, myofibril breaks, inconspicuous or absent nuclei, and pink collagen deposition. At PND90, the membrane integrity of mitochondria in the H-NP group was disrupted, the cristae disorder was aggravated, and there was internal lysis with vacuolation. Compared to the control group, the mitochondrial membrane potential of offspring at PND21 and PND90 was decreased in each of the NP exposure groups. NP exposure decreased the activity of mitochondrial respiratory enzyme complex I (CI) and increased the activity of mitochondrial respiratory enzyme complex IV (CIV) in the offspring. At PND21 and PND90, the mRNA and protein expression levels of cardiac mitochondrial PGC-1α, NRF-1, and TFAM decreased with increasing NP dose in a dose-dependent manner. In the in vitro experiment, H9C2 cells were divided into the following four groups: the blank group, RSV group (15 µg/ml), RSV + NP group (15 µg/ml RSV + 120 mmol/L NP), and NP group (120 mmol/L). With increasing NP concentration, the cell survival rate gradually decreased. Compared to the control, the membrane potential was significantly decreased in the NP group; the protein expression levels of SIRT1, PGC-1α, NRF-1, and TFAM in the NP group were significantly lower. CONCLUSION: Perinatal NP exposure caused mitochondrial damage and dysfunction in the offspring of exposed individuals in a dose-dependent manner. This toxic effect may be related to NP-induced mitochondrial pathology in the offspring and the inhibition of both gene and protein expression involved in the PGC-1α/NRF-1/TFAM mitochondrial biogenesis signaling pathway following NP exposure.


Assuntos
Mitocôndrias Cardíacas , Fenóis , Feminino , Gravidez , Ratos , Animais , Ratos Sprague-Dawley , Animais Recém-Nascidos , Fenóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA