Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nano Lett ; 24(31): 9459-9467, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39042710

RESUMO

Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.

2.
Nano Lett ; 24(15): 4408-4414, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567928

RESUMO

Tuning the interfacial Schottky barrier with van der Waals (vdW) contacts is an important solution for two-dimensional (2D) electronics. Here we report that the interlayer dipoles of 2D vdW superlattices (vdWSLs) can be used to engineer vdW contacts to 2D semiconductors. A bipolar WSe2 with Ba6Ta11S28 (BTS) vdW contact was employed to exhibit this strategy. Strong interlayer dipoles can be formed due to charge transfer between the Ba3TaS5 and TaS2 layers. Mechanical exfoliation breaks the superlattice and produces two distinguished surfaces with TaS2 and Ba3TaS5 terminations. The surfaces thus have opposite surface dipoles and consequently different work functions. Therefore, all the devices fall into two categories in accordance with the rectifying direction, which were verified by electrical measurements and scanning photocurrent microscopy. The growing vdWSL family along with the addition surface dipoles enables prospective vdW contact designs and have practical application in nanoelectronics and nano optoelectronics.

3.
Nano Lett ; 24(18): 5550-5555, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683946

RESUMO

Understanding and controlling exciton properties are important for the design of 2D semiconductors, such as monolayer transition metal dichalcogenides (TMDCs) and 2D halide perovskites (HPs). This paper demonstrates that the widespread strategy used for the exciton engineering of 2D HPs, based on dielectric mismatch, is flawed since dielectric mismatch has very little correlation with exciton properties. For monolayer TMDCs, however, the dielectric mismatch is shown to be more important.

4.
Nano Lett ; 24(7): 2142-2148, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323571

RESUMO

Spins confined to point defects in atomically thin semiconductors constitute well-defined atomic-scale quantum systems that are being explored as single-photon emitters and spin qubits. Here, we investigate the in-gap electronic structure of individual sulfur vacancies in molybdenum disulfide (MoS2) monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb blockade regime. Spectroscopic mapping of defect wave functions reveals an interplay of local symmetry breaking by a charge-state-dependent Jahn-Teller lattice distortion that, when combined with strong (≃100 meV) spin-orbit coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the lattice at low temperature, susceptible to lattice strain. Our results provide new insights into the spin and electronic structure of vacancy-induced in-gap states toward their application as electrically and optically addressable quantum systems.

5.
Small ; : e2400503, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953349

RESUMO

Inorganic layered compounds (2D-materials), particularly transition metal dichalcogenide (TMDC), are the focus of intensive research in recent years. Shortly after the discovery of carbon nanotubes (CNTs) in 1991, it was hypothesized that nanostructures of 2D-materials can also fold and seam forming, thereby nanotubes (NTs). Indeed, nanotubes (and fullerene-like nanoparticles) of WS2 and subsequently from MoS2 were reported shortly after CNT. However, TMDC nanotubes received much less attention than CNT until recently, likely because they cannot be easily produced as single wall nanotubes with well-defined chiral angles. Nonetheless, NTs from inorganic layered compounds have become a fertile field of research in recent years. Much progress has been achieved in the high-temperature synthesis of TMDC nanotubes of different kinds, as well as their characterization and the study of their properties and potential applications. Their multiwall structure is found to be a blessing rather than a curse, leading to intriguing observations. This concise minireview is dedicated to the recent progress in the research of TMDC nanotubes. After reviewing the progress in their synthesis and structural characterization, their contributions to the research fields of energy conversion and storage, polymer nanocomposites, andunique optoelectronic devices are being reviewed. These studies suggest numerous potential applications for TMDC nanotubes in various technologies, which are briefly discussed.

6.
Nano Lett ; 23(24): 11533-11539, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100087

RESUMO

The established paradigm to create valley states, excitations at local band extrema ("valleys"), is through selective occupation of specific valleys via circularly polarized laser pulses. Here we show a second way exists to create valley states, not by valley population imbalance but by "light-shaping" in momentum space, i.e. controlling the shape of the distribution of excited charge at each valley. While noncontrasting in valley charge, such valley states are instead characterized by a valley current, identically zero at one valley and finite and large at the other. We demonstrate that these (i) are robust to quantum decoherence, (ii) allow lossless toggling of the valley state with successive femtosecond laser pulses, and (iii) permit valley contrasting excitation both with and without a gap. Our findings open a route to robust ultrafast and switchable valleytronics in a wide scope of 2d materials, bringing closer the promise of valley-based electronics.

7.
Nano Lett ; 23(14): 6629-6636, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37347123

RESUMO

The extraordinary mechanical properties of two-dimensional transition-metal dichalcogenides make them ideal candidates for investigating strain-induced control of various physical properties. Here we explore the role of nonuniform strain in modulating optical, electronic, and transport properties of semiconducting, chemical vapor deposited monolayer MoS2, on periodically nanostructured substrates. A combination of spatially resolved spectroscopic and electronic properties explore and quantify the differential strain distribution and carrier density on a monolayer, as it conformally drapes over the periodic nanostructures. The observed accumulation in electron density at the strained regions is supported by theoretical calculations which form the likely basis for the ensuing ×60 increase in field effect mobility in strained samples. Though spatially nonuniform, the pattern-induced strain is shown to be readily controlled by changing the periodicity of the nanostructures thus providing a robust yet useful macroscopic control on strain and mobility in these systems.

8.
Nano Lett ; 23(23): 11006-11012, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038967

RESUMO

Interlayer excitons (IXs) formed at the interface of van der Waals materials possess various novel properties. In parallel development, strain engineering has emerged as an effective means for creating 2D quantum emitters. Exploring the intersection of these two exciting areas, we use MoS2/WSe2 heterostructure as a model system and demonstrate how strain, defects, and layering can be utilized to create defect-bound IXs capable of bright, robust, and tunable quantum light emission in the technologically important near-infrared spectral range. Our work presents defect-bound IXs as a promising platform for pushing the performance of 2D quantum emitters beyond their current limitations.

9.
Nano Lett ; 23(23): 10848-10855, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967849

RESUMO

In nanophotonics and quantum optics, we aim to control and manipulate light with tailored nanoscale structures. Hybrid systems of nanostructures and atomically thin materials are of interest here, as they offer rich physics and versatility due to the interaction between photons, plasmons, phonons, and excitons. In this study, we explore the optical and electronic properties of a hybrid system, a naturally n-doped monolayer WS2 covering a gold disk. We demonstrate that the nonresonant excitation of the gold disk in the high absorption regime efficiently generates hot carriers via localized surface plasmon excitation, which n-dope the monolayer WS2 and enhance the photoluminescence emission by regulating the multiexciton population and stabilizing the neutral exciton emission. The results are relevant to the further development of nanotransistors in photonic circuits and optoelectronic applications.

10.
Nano Lett ; 23(8): 3159-3166, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37037187

RESUMO

We demonstrate the possibility of engineering the optical properties of transition metal dichalcogenide heterobilayers when one of the constitutive layers has a Janus structure. We investigate different MoS2@Janus layer combinations using first-principles methods including excitons and exciton-phonon coupling. The direction of the intrinsic electric field from the Janus layer modifies the electronic band alignments and, consequently, the energy separation between dark interlayer exciton states and bright in-plane excitons. We find that in-plane lattice vibrations strongly couple the two states, so that exciton-phonon scattering may be a viable generation mechanism for interlayer excitons upon light absorption. In particular, in the case of MoS2@WSSe, the energy separation of the low-lying interlayer exciton from the in-plane exciton is resonant with the transverse optical phonon modes (40 meV). We thus identify this heterobilayer as a prime candidate for efficient generation of charge-separated electron-hole pairs.

11.
Nano Lett ; 23(13): 6171-6177, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37363814

RESUMO

Spins confined to atomically thin semiconductors are being actively explored as quantum information carriers. In transition metal dichalcogenides (TMDCs), the hexagonal crystal lattice gives rise to an additional valley degree of freedom with spin-valley locking and potentially enhanced spin life and coherence times. However, realizing well-separated single-particle levels and achieving transparent electrical contact to address them has remained challenging. Here, we report well-defined spin states in a few-layer MoS2 transistor, characterized with a spectral resolution of ∼50 µeV at Tel = 150 mK. Ground state magnetospectroscopy confirms a finite Berry-curvature induced coupling of spin and valley, reflected in a pronounced Zeeman anisotropy, with a large out-of-plane g-factor of g⊥ ≃ 8. A finite in-plane g-factor (g∥ ≃ 0.55-0.8) allows us to quantify spin-valley locking and estimate the spin-orbit splitting 2ΔSO ∼ 100 µeV. The demonstration of spin-valley locking is an important milestone toward realizing spin-valley quantum bits.

12.
Nanotechnology ; 34(38)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37257442

RESUMO

Single layers of transition metal dichalcogenides (TMDCs), such as WSe2have gathered increasing attention due to their intense electron-hole interactions, being considered promising candidates for developing novel optical applications. Within the few-layer regime, these systems become highly sensitive to the surrounding environment, enabling the possibility of using a proper substrate to tune desired aspects of these atomically-thin semiconductors. In this scenario, the dielectric environment provided by the substrates exerts significant influence on electronic and optical properties of these layered materials, affecting the electronic band-gap and the exciton binding energy. However, the corresponding effect on the luminescence of TMDCs is still under discussion. To elucidate these impacts, we used a broad set of materials as substrates for single-layers of WSe2, enabling the observation of these effects over a wide range of electrical permittivities. Our results demonstrate that an increasing permittivity induces a systematic red-shift of the optical band-gap of WSe2, intrinsically related to a considerable reduction of the luminescence intensity. Moreover, we annealed the samples to ensure a tight coupling between WSe2and its substrates, reducing the effect of undesired adsorbates trapped in the interface. Ultimately, our findings reveal how critical the annealing temperature can be, indicating that above a certain threshold, the heating treatment can induce adverse impacts on the luminescence. Furthermore, our conclusions highlight the influence the dielectric properties of the substrate have on the luminescence of WSe2, showing that a low electrical permittivity favours preserving the native properties of the adjacent monolayer.


Assuntos
Hipertermia Induzida , Luminescência , Eletricidade , Eletrônica , Elétrons
13.
Nanotechnology ; 34(43)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478833

RESUMO

In addition to the superior electrical and optoelectronic attributes, ultrathin two-dimensional transition metal dichalcogenides (TMDCs) have evoked appreciable attention for their piezoelectric properties. In this study, we report, the piezoelectric characteristics of large area, chemically exfoliated TMDCs and their heterostructures for the first time, as verified by piezoelectric force microscopy measurements. Piezoelectric output voltage response of the MoS2-WSe2heterostructure piezoelectric nanogenerator (PENG) is enhanced by ∼47.5% if compared with WSe2and ∼29% if compared to MoS2PENG, attributed to large band offset induced by heterojunction formation. This allows the scalable fabrication of self-powered energy harvesting PENGs, which can overcome the various shortcomings of complicated synthesis processes, complex fabrication steps, low yield, and poor stability. The fabricated flexible, self-powered MoS2-WSe2heterostructure nanogenerator exhibits piezoelectric output ∼46 mV under a strain of ∼0.66% yielding a power output ∼12.3 nW, which offers better performance than other two-dimensional material based piezoelectric devices and also reveals the ability of bio-mechanical energy harvesting. This cost effective approach to fabricate eco-friendly MoS2-WSe2based fatigue free, superior performance piezoelectric-nanogenerators can be utilized to evolve flexible energy harvesting devices and may also be attractive as a self-powered, smart wearable sensor devices.

14.
Nano Lett ; 22(1): 476-484, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978815

RESUMO

A charge density wave (CDW) is a collective quantum phenomenon in metals and features a wavelike modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semiconductor-metal phase transition in 1T-ZrX2 (X = Se, Te) ultrathin films, accompanied by a commensurate 2 × 2 CDW order. Furthermore, we observed a CDW energy gap of up to 22 meV around the Fermi level. Fourier-transformed scanning tunneling microscopy and angle-resolved photoemission spectroscopy reveal that 1T-ZrX2 films exhibit the simplest Fermi surface among the known CDW materials in TMDCs, consisting only of a Zr 4d derived elliptical electron conduction band at the corners of the Brillouin zone.

15.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35970141

RESUMO

Taking into account the novel layered structure and unusual electronic properties of MoS2and WS2on the side the lack of dangling bonds between these two components and donor-acceptor linkage effects, growth of the MoS2/WS2vertical heterojunction film on the amorphous SiO2/Si substrate have created high demand. In this study, we reported the continuous, scalable, and vertical MoS2/WS2heterostructure film by using a sputtering without a transfer step. The WS2film was continuously grown on MoS2and eventually led to the formation of the MoS2/WS2vertical heterojunction film. Dozens of FETs fabricated on MoS2/WS2continuous heterojunction film were created on the same substrate in a single lithographic fabrication step, allowing them to be commercialized and not only used in research applications. RAMAN spectra proved the formation of the MoS2/WS2heterostructure film. In XPS measurements, it was shown that a separate MoS2and WS2layer was grown instead of the alloy structure. The polarity behavior of the MoS2/WS2heterostructure FET was found to be modulated with different drain voltages as p-type to ambipolar and finally n-type conductivity because of the transition of band structure and Schottky barrier heights at different drain voltages. Electron mobility (7.2 cm2V.s-1) and on/off ratio (104-105) exhibited by the MoS2/WS2heterostructure FETs displayed a more improved electrical performance than that of individual WS2, MoS2devices. It was observed that the mobility value of MoS2/WS2FET was approximately 514 times greater than WS2FET and 800 times greater than MoS2FET. Additionally, the MoS2/WS2FET on/off ratio was larger than 2 order MoS2FET and 1 order WS2FET. The film of continuous vertical heterojunctions as in the MoS2/WS2currents in the study would be a promising candidate for nanoelectronics fields. This work demonstrated the progress towards realizing carrier-type controlled high-performance MoS2/WS2heterojunction-based FETs for future logic devices.

16.
Nanotechnology ; 34(5)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36317282

RESUMO

As down scaling of transistors continues, there is a growing interest in developing steep-slope transistors with reduced subthreshold slope (SS) below the Boltzmann limit. In this work, we successfully fabricated steep-slope MoS2transistors by incorporating a graphene layer, inserted in the gate stack. For our comprehensive study, we have applied density functional theory to simulate and calculate the change of SS effected by different 2D quantum materials, including graphene, germanene and 2D topological insulators, inserted within the gate dielectric. This theoretical study showed that graphene/MoS2devices had steep SS (27.2 mV/decade), validating our experimental approach (49.2 mV/decade). Furthermore, the simulations demonstrated very steep SS (8.6 mV/decade) in WTe2/MoS2devices. We conclude that appropriate combination of various 2D quantum materials for the gate-channel stacks, leads to steep SS and is an effective method to extend the scaling of transistors with exceptional performance.

17.
Nano Lett ; 21(23): 9896-9902, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812637

RESUMO

Nanobubbles formed in monolayers of transition metal dichalcogenides (TMDCs) on top of a substrate feature localized potentials in which electrons can be captured. We show that the captured electronic density can exhibit a nontrivial spatiotemporal dynamics, whose movements can be mapped to states in a two-level system illustrated as points of an electronic Poincaré sphere. These states can be fully controlled, i.e, initialized and switched, by multiple electronic wave packets. Our results could be the foundation for novel implementations of quantum circuits.

18.
Nano Lett ; 21(3): 1546-1554, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502866

RESUMO

Single-photon emitters, the basic building blocks of quantum communication and information, have been developed using atomically thin transition metal dichalcogenides (TMDCs). Although the bandgap of TMDCs was spatially engineered in artificially created defects for single-photon emitters, it remains a challenge to precisely align the emitter's dipole moment to optical cavities for the Purcell enhancement. Here, we demonstrate position- and polarization-controlled single-photon emitters in monolayer WSe2. A tensile strain of ∼0.2% was applied to monolayer WSe2 by placing it onto a dielectric rod structure with a nanosized gap. Excitons were localized in the nanogap sites, resulting in the generation of linearly polarized single-photon emission with a g(2) of ∼0.1 at 4 K. Additionally, we measured the abrupt change in polarization of single photons with respect to the nanogap size. Our robust spatial and polarization control of emission provides an efficient way to demonstrate deterministic and scalable single-photon sources by integrating with nanocavities.

19.
Nano Lett ; 21(13): 5614-5619, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34161104

RESUMO

We demonstrate superconducting vertical interconnect access (VIA) contacts to a monolayer of molybdenum disulfide (MoS2), a layered semiconductor with highly relevant electronic and optical properties. As a contact material we use MoRe, a superconductor with a high critical magnetic field and high critical temperature. The electron transport is mostly dominated by a single superconductor/normal conductor junction with a clear superconductor gap. In addition, we find MoS2 regions that are strongly coupled to the superconductor, resulting in resonant Andreev tunneling and junction-dependent gap characteristics, suggesting a superconducting proximity effect. Magnetoresistance measurements show that the bandstructure and the high intrinsic carrier mobility remain intact in the bulk of the MoS2. This type of VIA contact is applicable to a large variety of layered materials and superconducting contacts, opening up a path to monolayer semiconductors as a platform for superconducting hybrid devices.

20.
Nano Lett ; 21(8): 3557-3565, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33835807

RESUMO

Two-dimensional (2D) materials, which exhibit planar-wafer technique compatibility and pure electrically triggered communication, have established themselves as potential candidates in neuromorphic architecture integration. However, the current 2D artificial synapses are mainly realized at a single-device level, where the development of 2D scalable synaptic arrays with complementary metal-oxide-semiconductor compatibility remains challenging. Here, we report a 2D transition metal dichalcogenide-based synaptic array fabricated on commercial silicon-rich silicon nitride (sr-SiNx) substrate. The array demonstrates uniform performance with sufficiently high analogue on/off ratio and linear conductance update, and low cycle-to-cycle variability (1.5%) and device-to-device variability (5.3%), which are essential for neuromorphic hardware implementation. On the basis of the experimental data, we further prove that the artificial synapses can achieve a recognition accuracy of 91% on the MNIST handwritten data set. Our findings offer a simple approach to achieve 2D synaptic arrays by using an industry-compatible sr-SiNx dielectric, promoting a brand-new paradigm of 2D materials in neuromorphic computing.


Assuntos
Redes Neurais de Computação , Sinapses , Óxidos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA