Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 497: 42-58, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893882

RESUMO

Primordial germ cells (PGCs) give rise to gametes - cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris. The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa. At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.


Assuntos
Tardígrados , Animais , Células Germinativas , RNA Mensageiro/genética
2.
Mol Pharm ; 21(7): 3634-3642, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805365

RESUMO

Drying protein-based drugs, usually via lyophilization, can facilitate storage at ambient temperature and improve accessibility but many proteins cannot withstand drying and must be formulated with protective additives called excipients. However, mechanisms of protection are poorly understood, precluding rational formulation design. To better understand dry proteins and their protection, we examine Escherichia coli adenylate kinase (AdK) lyophilized alone and with the additives trehalose, maltose, bovine serum albumin, cytosolic abundant heat soluble protein D, histidine, and arginine. We apply liquid-observed vapor exchange NMR to interrogate the residue-level structure in the presence and absence of additives. We pair these observations with differential scanning calorimetry data of lyophilized samples and AdK activity assays with and without heating. We show that the amino acids do not preserve the native structure as well as sugars or proteins and that after heating the most stable additives protect activity best.


Assuntos
Adenilato Quinase , Escherichia coli , Liofilização , Trealose , Liofilização/métodos , Adenilato Quinase/metabolismo , Trealose/química , Soroalbumina Bovina/química , Excipientes/química , Varredura Diferencial de Calorimetria , Maltose/química , Histidina/química , Arginina/química , Espectroscopia de Ressonância Magnética
3.
Mol Cell Neurosci ; 125: 103826, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36858083

RESUMO

Tardigrades are microscopic invertebrates, which are capable of withstanding extreme environmental conditions, including high levels of radiation. A Tardigrade protein, Dsup (Damage Suppressor), protects the Tardigrade's DNA during harsh environmental stress and X-rays. When expressed in cancer cells, Dsup protects DNA from single- and double-strand breaks (DSBs) induced by radiation, increases survival of irradiated cells, and protects DNA from reactive oxygen species. These unusual properties of Dsup suggested that understanding how the protein functions may help in the design of small molecules that could protect humans during radiotherapy or space travel. Here, we investigated if Dsup is protective in cortical neurons cultured from rat embryos. We discovered that, in cortical neurons, the codon-optimized Dsup localizes to the nucleus and, surprisingly, promotes neurotoxicity, leading to neurodegeneration. Unexpectedly, we found that Dsup expression results in the formation of DNA DSBs in cultured neurons. With electron microscopy, we discovered that Dsup promotes chromatin condensation. Unlike Dsup's protective properties in cancerous cells, in neurons, Dsup promotes neurotoxicity, induces DNA damage, and rearranges chromatin. Neurons are sensitive to Dsup, and Dsup is a doubtful surrogate for DNA protection in neuronal cells.


Assuntos
Cromatina , Dano ao DNA , Humanos , Animais , Ratos , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Neurônios/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446560

RESUMO

Tardigrades must negotiate heterogeneous, fluctuating environments and accordingly utilize locomotive strategies capable of dealing with variable terrain. We analyze the kinematics and interleg coordination of freely walking tardigrades (species: Hypsibius exemplaris). We find that tardigrade walking replicates several key features of walking in insects despite disparities in size, skeleton, and habitat. To test the effect of environmental changes on tardigrade locomotor control circuits we measure kinematics and interleg coordination during walking on two substrates of different stiffnesses. We find that the phase offset between contralateral leg pairs is flexible, while ipsilateral coordination is preserved across environmental conditions. This mirrors similar results in insects and crustaceans. We propose that these functional similarities in walking coordination between tardigrades and arthropods is either due to a generalized locomotor control circuit common to panarthropods or to independent convergence onto an optimal strategy for robust multilegged control in small animals with simple circuitry. Our results highlight the value of tardigrades as a comparative system toward understanding the mechanisms-neural and/or mechanical-underlying coordination in panarthropod locomotion.


Assuntos
Evolução Biológica , Locomoção , Extremidade Inferior/fisiologia , Tardígrados/fisiologia , Velocidade de Caminhada/fisiologia , Caminhada , Animais , Fenômenos Biomecânicos , Processamento de Imagem Assistida por Computador , Gravação em Vídeo
5.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(7): 414-428, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38839369

RESUMO

Tardigrades are microscopic animals that are renowned for their capabilities of tolerating near-complete desiccation by entering an ametabolic state called anhydrobiosis. However, many species also show high tolerance against radiation in the active state as well, suggesting cross-tolerance via the anhydrobiosis mechanism. Previous studies utilized indirect DNA damaging agents to identify core components of the cross-tolerance machinery in species with high anhydrobiosis capacities. However, it was difficult to distinguish whether transcriptomic changes were specific to DNA damage or mutual with anhydrobiosis. To this end, we performed transcriptome analysis on bleomycin-exposed Hypsibius exemplaris. We observed induction of several tardigrade-specific gene families, including a previously identified novel anti-oxidative stress family, which may be a core component of the cross-tolerance mechanism. We also identified enrichment of the tryptophan metabolism pathway, for which metabolomic analysis suggested engagement of this pathway in stress tolerance. These results provide several candidates for the core component of cross-tolerance, as well as possible anhydrobiosis machinery.


Assuntos
Bleomicina , Dano ao DNA , Perfilação da Expressão Gênica , Tardígrados , Animais , Bleomicina/farmacologia , Tardígrados/genética , Tardígrados/metabolismo , Transcriptoma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
6.
Mol Phylogenet Evol ; 180: 107707, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681365

RESUMO

The tardigrade genus Acutuncus has been long thought to be an Antarctic endemism, well adapted to this harsh environment. The Antarctic endemicity of Acutuncus was recently dispelled with the description of Acutuncus mariae Zawierucha, 2020 found in the Svalbard archipelago. The integrated analyses on two newly found Acutuncus populations from UK and Italy, and a population of Acutuncus antarcticus found close to its type locality allowed us to expand the climatic and geographic range of the genus Acutuncus. These findings also allowed us to re-evaluate the morphological diagnoses of Acutuncus and accommodate it in the newly proposed monotypic family Acutuncidae fam. nov. Two new Acutuncus species morpho-groups are instituted based on eggs morphology: one (Acutuncus antarcticus morphogroup) including the Antarctic Acutuncus taxa characterized by eggs with long pillars within the chorion and eggs laid freely to the environment, the other (Acutuncus mariae morphogroup) including the European species, characterized by eggs with short pillars within the chorion and eggs laid in the exuvium. Finally, we describe two new Acutuncus species from Europe: Acutuncus mecnuffisp. nov. and Acutuncus giovanniniaesp. nov.


Assuntos
Tardígrados , Animais , Filogenia , Europa (Continente) , Regiões Antárticas , Itália
7.
Zoolog Sci ; 40(3): 246-261, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256572

RESUMO

There have been several records in the last 60 years for East Antarctica for Milnesium tardigradum Doyère, 1840 sensu lato, now considered a species complex. During the 56th Japanese Antarctic Research Expedition summer operation (2014-2015), a new tardigrade species in the genus Milnesium Doyère, 1840 was found in an ice-free Innhovde area along Lützow-Holm Bay, Dronning Maud Land, East Antarctica. The new species has aberrant claws with four to seven points on each secondary claw branch, which distinguishes it from other Milnesium species. A male specimen was found in the population and evidence showed that an isolated adult female moulted twice without oviposition. This strongly suggested bisexual reproduction for this population. The new species, Milnesium rastrum sp. nov., is described with its phylogenetic position and a discussion on the reproductive strategies for the harsh environments.


Assuntos
Casco e Garras , Minorias Sexuais e de Gênero , Tardígrados , Animais , Feminino , Masculino , Humanos , Regiões Antárticas , Filogenia
8.
BMC Genomics ; 23(1): 405, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643424

RESUMO

BACKGROUND: Tardigrades are microscopic animals that are capable of tolerating extreme environments by entering a desiccated state of suspended animation known as anhydrobiosis. While antioxidative stress proteins, antiapoptotic pathways and tardigrade-specific intrinsically disordered proteins have been implicated in the anhydrobiotic machinery, conservation of these mechanisms is not universal within the phylum Tardigrada, suggesting the existence of overlooked components. RESULTS: Here, we show that a novel Mn-dependent peroxidase is an important factor in tardigrade anhydrobiosis. Through time-series transcriptome analysis of Ramazzottius varieornatus specimens exposed to ultraviolet light and comparison with anhydrobiosis entry, we first identified several novel gene families without similarity to existing sequences that are induced rapidly after stress exposure. Among these, a single gene family with multiple orthologs that is highly conserved within the phylum Tardigrada and enhances oxidative stress tolerance when expressed in human cells was identified. Crystallographic study of this protein suggested Zn or Mn binding at the active site, and we further confirmed that this protein has Mn-dependent peroxidase activity in vitro. CONCLUSIONS: Our results demonstrated novel mechanisms for coping with oxidative stress that may be a fundamental mechanism of anhydrobiosis in tardigrades. Furthermore, localization of these sets of proteins mainly in the Golgi apparatus suggests an indispensable role of the Golgi stress response in desiccation tolerance.


Assuntos
Tardígrados , Animais , Peroxidases/genética , Tardígrados/genética , Fatores de Tempo , Transcriptoma , Raios Ultravioleta/efeitos adversos
9.
Artigo em Inglês | MEDLINE | ID: mdl-35182765

RESUMO

Tardigrades are renowned for their extreme stress tolerance, which includes the ability to endure complete desiccation, high levels of radiation and very low sub-zero temperatures. Nevertheless, tardigrades appear to be vulnerable to high temperatures and thus the potential effects of global warming. Here, we provide the first analysis of transcriptome data obtained from heat stressed specimens of the eutardigrade Ramazzottius varieornatus, with the aim of providing new insights into the molecular processes affected by high temperatures. Specifically, we compare RNA-seq datasets obtained from active, heat-exposed (35 °C) tardigrades to that of active controls kept at 5 °C. Our data reveal a surprising shift in transcription, involving 9634 differentially expressed transcripts, corresponding to >35% of the transcriptome. The latter data are in striking contrast to the hitherto observed constitutive expression underlying tardigrade extreme stress tolerance and entrance into the latent state of life, known as cryptobiosis. Thus, when examining the molecular response, heat-stress appears to be more stressful for R. varieornatus than extreme conditions, such as desiccation or freezing. A gene ontology analysis reveals that the heat stress response involves a change in transcription and presumably translation, including an adjustment of metabolism, and, putatively, preparation for encystment and subsequent diapause. Among the differentially expressed transcripts we find heat-shock proteins as well as the eutardigrade specific proteins (CAHS, SAHS, MAHS, RvLEAM, and Dsup). The latter proteins thus seem to contribute to a general stress response, and may not be directly related to cryptobiosis.


Assuntos
Tardígrados , Transcriptoma , Animais , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , RNA-Seq , Tardígrados/genética
10.
Front Zool ; 18(1): 15, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794934

RESUMO

Anhydrobiosis can be described as an adaptation to lack of water that enables some organisms, including tardigrades, to survive extreme conditions, even some that do not exist on Earth. The cellular mechanisms underlying anhydrobiosis are still not completely explained including the putative contribution of mitochondrial proteins. Since mitochondrial alternative oxidase (AOX), described as a drought response element in plants, was recently proposed for various invertebrates including tardigrades, we investigated whether AOX is involved in successful anhydrobiosis of tardigrades. Milnesium inceptum was used as a model for the study. We confirmed functionality of M. inceptum AOX and estimated its contribution to the tardigrade revival after anhydrobiosis of different durations. We observed that AOX activity was particularly important for M. inceptum revival after the long-term tun stage but did not affect the rehydration stage specifically. The results may contribute to our understanding and then application of anhydrobiosis underlying mechanisms.

11.
Genes Cells ; 24(12): 768-780, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31608545

RESUMO

The anhydrobiotic tardigrade, Hypsibius exemplaris, was previously considered to require de novo gene expression and protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activity for successful anhydrobiosis. These indicate that H. exemplaris has signal transduction systems responding to desiccation stress, with the involvement of phosphorylation events. To this end, we carried out time-series phosphoproteomics of H. exemplaris exposed to mild desiccation stress and detected 48 phosphoproteins with significant differential regulations. Among them, immediate and successive reduction of phosphorylation levels of AMP-activated protein kinase (AMPK) was observed. The subsequent chemical genetic approach showed that AMPK was activated during the preconditioning stage for anhydrobiosis, and inhibition of its activity impaired successful anhydrobiosis. As PP2A is known to dephosphorylate AMPK in other organisms, we suggested that decreased phosphorylation levels of AMPK upon mild desiccation stress were caused by dephosphorylation by PP2A. Accordingly, phosphoproteomics of animals pre-treated with the PP1/PP2A inhibitor cantharidic acid (CA) lacked the decrease in phosphorylation levels of AMPK. These observations suggest that AMPK activity is required for successful anhydrobiosis in H. exemplaris, and its phosphorylation state is possibly regulated by PP2A.


Assuntos
Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Estresse Fisiológico , Tardígrados/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Dessecação , Fosforilação , Proteoma/metabolismo , Tardígrados/fisiologia
12.
Cell Commun Signal ; 18(1): 178, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148259

RESUMO

Disordered proteins have long been known to help mediate tolerance to different abiotic stresses including freezing, osmotic stress, high temperatures, and desiccation in a diverse set of organisms. Recently, three novel families of intrinsically disordered proteins were identified in tardigrades, microscopic animals capable of surviving a battery of environmental extremes. These three families include the Cytoplasmic-, Secreted-, and Mitochondrial- Abundant Heat Soluble (CAHS, SAHS, and MAHS) proteins, which are collectively termed Tardigrade Disordered Proteins (TDPs). At the level of sequence conservation TDPs are unique to tardigrades, and beyond their high degree of disorder the CAHS, SAHS, and MAHS families do not resemble one another. All three families are either highly expressed constitutively, or significantly enriched in response to desiccation. In vivo, ex vivo, and in vitro experiments indicate functional roles for members of each TDP family in mitigating cellular perturbations induced by various abiotic stresses. What is currently lacking is a comprehensive and holistic understanding of the fundamental mechanisms by which TDPs function, and the properties of TDPs that allow them to function via those mechanisms. A quantitative and systematic approach is needed to identify precisely what cellular damage TDPs work to prevent, what sequence features are important for these functions, and how those sequence features contribute to the underlying mechanisms of protection. Such an approach will inform us not only about these fascinating proteins, but will also provide insights into how the sequence of a disordered protein can dictate its functional, structural, and dynamic properties. Video Abstract.


Assuntos
Adaptação Fisiológica , Proteínas Intrinsicamente Desordenadas/metabolismo , Estresse Fisiológico , Tardígrados/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo
13.
Biol Lett ; 16(10): 20200391, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050831

RESUMO

Naturally occurring fluorescence has been observed in multiple species ranging from bacteria to birds. In macroscopic animals such as birds, fluorescence provides a visual communication signal. However, the functional significance of this phenomenon is unknown in most cases. Though photoprotection is attributed to fluorescence under ultraviolet (UV) light in some organisms, it lacks direct experimental evidence. Here, we demonstrate naturally occurring fluorescence under UV light in a eutardigrade belonging to the genus Paramacrobiotus. Using a natural variant that lacks fluorescence, we show that the fluorescence confers tolerance to lethal UV radiation. Remarkably, the fluorescent extract from Paramacrobiotus sp. could protect the UV-sensitive tardigrade Hypsibius exemplaris and nematode Caenorhabditis elegans from germicidal UV radiation. We propose that Paramacrobiotus sp. possess a protective fluorescent shield that absorbs harmful UV radiation and emits harmless blue light.


Assuntos
Tardígrados , Raios Ultravioleta , Animais , Fluorescência
14.
Proc Natl Acad Sci U S A ; 113(18): 5053-8, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27035985

RESUMO

Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.


Assuntos
Transferência Genética Horizontal , Tardígrados/genética , Animais , Artrópodes/genética , Genoma , Dados de Sequência Molecular , Filogenia
15.
Proc Natl Acad Sci U S A ; 112(52): 15976-81, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26598659

RESUMO

Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.


Assuntos
Transferência Genética Horizontal , Genoma/genética , Biblioteca Genômica , Análise de Sequência de DNA/métodos , Tardígrados/genética , Animais , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Viral/química , DNA Viral/genética , Filogenia , Tardígrados/classificação
16.
Zoolog Sci ; 34(1): 11-17, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28148218

RESUMO

Extreme environments sometimes support surprisingly high meiofaunal diversity. We sampled runoff from the acidic hot springs of Unzen, Japan. This is the type locality of Thermozodium esakii Rahm, 1937, the only tardigrade in the class Mesotardigrada, which remains contentious in the absence of corroboration or supporting specimens. Our sampling revealed at least three species of arthropods, four rotifers, and five nematodes living in the hot (ca. 40°C) and acidic (ca. pH 2.5) water, but no tardigrades.


Assuntos
Biodiversidade , Fontes Termais , Tardígrados/classificação , Tardígrados/fisiologia , Animais , Artrópodes/classificação , Japão , Larva/classificação , Nematoides/classificação , Rotíferos/classificação
17.
Zoolog Sci ; 33(4): 431-3, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27498803

RESUMO

Milnesium tardigradum trispinosa Rahm, 1931 is characterized by its three spines at the posterior end of the animal, but has never been reported since its original description. Among mounted specimens of Milnesium sp. from Japan and M. tardigradum s. s. from France, several cases with these 'three spines' were observed. In these samples, the character was formed by an artifact of the fixation process. Images of these specimens show such a striking similarity to Milnesium tardigradum trispinosa that this taxon must be considered as having been erroneously established as a result of misinterpretation of an artifact and no longer valid.


Assuntos
Artefatos , Manejo de Espécimes , Tardígrados/classificação , Animais
18.
Biol Open ; 13(10)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39229830

RESUMO

Tardigrades are known for their ability to survive extreme conditions. Reports indicate that tardigrade thermal tolerance is enhanced in the desiccated state; however, these reports have almost always used a single tardigrade species and drying/heating methods vary between studies. Using six different species of tardigrades we confirm that desiccation enhances thermal tolerance in tardigrades. Furthermore, we show that differences in thermal tolerance exist between tardigrade species both when hydrated and desiccated. While Viridiscus viridianus survives the highest temperatures in the hydrated state of any species tested here, under hydrated conditions, the thermal tolerance of V. viridianus is restricted to an acute transient stress. Furthermore, unlike other stresses, such as desiccation, where mild initial exposure preconditions some species to survive subsequent harsher treatment, for V. viridianus exposure to mild thermal stress in the hydrated state does not confer protection to harsher heating. Our results suggest that while tardigrades have the capacity to tolerate mild thermal stress while hydrated, survival of high temperatures in a desiccated state is a by-product of tardigrades' ability to survive desiccation.


Assuntos
Dessecação , Tardígrados , Animais , Tardígrados/fisiologia , Termotolerância , Temperatura , Estresse Fisiológico , Especificidade da Espécie , Adaptação Fisiológica
19.
Sci Rep ; 14(1): 11834, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783150

RESUMO

Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Células-Tronco , Tardígrados , Animais , Humanos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Tardígrados/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Adipogenia , Células Cultivadas , Estresse Fisiológico
20.
Elife ; 132024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980300

RESUMO

Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Radiação Ionizante , Tardígrados , Transcriptoma , Tardígrados/genética , Tardígrados/metabolismo , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Dano ao DNA , Tolerância a Radiação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA