Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Res ; 396(2): 141-155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539007

RESUMO

Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.


Assuntos
Telócitos , Telócitos/citologia , Telócitos/metabolismo , Humanos , Animais
2.
Cell Tissue Res ; 396(2): 213-229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424269

RESUMO

A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.


Assuntos
Animais Peçonhentos , Matriz Extracelular , Sanguessugas , Morfogênese , Animais , Matriz Extracelular/metabolismo , Sanguessugas/embriologia
3.
Cell Biol Int ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099163

RESUMO

Telocytes (TCs), a novel type of mesenchymal or interstitial cell with specific, very long and thin cellular prolongations, have been found in various mammalian organs and have potential biological functions. However, their existence during lung development is poorly understood. This study aimed to investigate the existence, morphological features, and role of CD34+ SCs/TCs in mouse lungs from foetal to postnatal life using primary cell culture, double immunofluorescence, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The immunofluorescence double staining profiles revealed positive expression of CD34 and PDGFR-α, Sca-1 or VEGFR-3, and the expression of these markers differed among the age groups during lung development. Intriguingly, in the E18.5 stage of development, along with the CD34+ SCs/TCs, haematopoietic stem cells and angiogenic factors were also significantly increased in number compared with those in the E14.5, E16.5, P0 and P7. Subsequently, TEM confirmed that CD34+ SCs/TCs consisted of a small cell body with long telopodes (Tps) that projected from the cytoplasm. Tps consisted of alternating thin and thick segments known as podomers and podoms. TCs contain abundant endoplasmic reticulum, mitochondria and secretory vesicles and establish close connections with neighbouring cells. Furthermore, SEM revealed characteristic features, including triangular, oval, spherical, or fusiform cell bodies with extensive cellular prolongations, depending on the number of Tps. Our findings provide evidence for the existence of CD34+ SCs/TCs, which contribute to vasculogenesis, the formation of the air‒blood barrier, tissue organization during lung development and homoeostasis.

4.
Cell Biol Int ; 48(5): 647-664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353345

RESUMO

Intrauterine adhesions (IUA), the main cause of secondary infertility in women, result from irreversible fibrotic repair of the endometrium due to inflammation or human factors, accompanied by disruptions in the repair function of endometrial stem cells. This significantly impacts the physical and mental health of women in their childbearing years. Telocytes (TCs), a distinctive type of interstitial cells found in various tissues and organs, play diverse repair functions due to their unique spatial structure. In this study, we conduct the inaugural exploration of the changes in TCs in IUA disease and their potential impact on the function of stem cells. Our results show that in vivo, through double immunofluorescence staining (CD34+/Vimentin+; CD34+/CD31-), as endometrial fibrosis deepens, the number of TCs gradually decreases, telopodes shorten, and the three-dimensional structure becomes disrupted in the mouse IUA mode. In vitro, TCs can promote the proliferation and cycle of bone mesenchymal stem cells (BMSCs) by promoting the Wnt/ß-catenin signaling pathway, which were inhibited using XAV939. TCs can promote the migrated ability of BMSCs and contribute to the repair of stem cells during endometrial injury. In addition, TCs can inhibit the apoptosis of BMSCs through the Bcl-2/Bax pathway. In conclusion, our study demonstrates, for the first time, the resistance role of TCs in IUA disease, shedding light on their potential involvement in endometrial repair through the modulation of stem cell function.


Assuntos
Células-Tronco Mesenquimais , Telócitos , Doenças Uterinas , Humanos , Camundongos , Feminino , Animais , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Endométrio/patologia , Células-Tronco Mesenquimais/metabolismo , Telócitos/metabolismo , Via de Sinalização Wnt , Modelos Animais de Doenças
5.
BMC Vet Res ; 20(1): 73, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402164

RESUMO

BACKGROUND: Telocytes are modified interstitial cells that communicate with other types of cells, including stem cells. Stemness properties render them more susceptible to environmental conditions. The current morphological investigation examined the reactions of telocytes to salt stress in relation to stem cells and myoblasts. The common carp are subjected to salinity levels of 0.2, 6, and 10 ppt. The gill samples were preserved and prepared for TEM. RESULTS: The present study observed that telocytes undergo morphological change and exhibit enhanced secretory activities in response to changes in salinity. TEM can identify typical telocytes. This research gives evidence for the communication of telocytes with stem cells, myoblasts, and skeletal muscles. Telocytes surround stem cells. Telopodes made planar contact with the cell membrane of the stem cell. Telocytes and their telopodes surrounded the skeletal myoblast. These findings show that telocytes may act as nurse cells for skeletal stem cells and myoblasts, which undergo fibrillogenesis. Not only telocytes undergo morphological alternations, but also skeletal muscles become hypertrophied, which receive telocyte secretory vesicles in intercellular compartments. CONCLUSION: In conclusion, the activation of telocytes is what causes stress adaptation. They might act as important players in intercellular communication between cells. It is also possible that reciprocal interaction occurs between telocytes and other cells to adapt to changing environmental conditions.


Assuntos
Carpas , Telócitos , Animais , Salinidade , Telócitos/metabolismo , Microscopia Eletrônica de Transmissão/veterinária , Músculo Esquelético , Células-Tronco , Mioblastos
6.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999930

RESUMO

Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1ß were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1ß immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.


Assuntos
COVID-19 , Receptores ErbB , SARS-CoV-2 , Glândula Submandibular , Xerostomia , COVID-19/patologia , COVID-19/virologia , COVID-19/metabolismo , Animais , Glândula Submandibular/virologia , Glândula Submandibular/patologia , Glândula Submandibular/metabolismo , SARS-CoV-2/fisiologia , Camundongos , Xerostomia/etiologia , Xerostomia/patologia , Xerostomia/virologia , Xerostomia/metabolismo , Receptores ErbB/metabolismo , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Mucina-5B/metabolismo , Células Acinares/patologia , Células Acinares/metabolismo , Células Acinares/virologia , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças
7.
J Cell Mol Med ; 27(24): 3980-3994, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855260

RESUMO

Co-transplantation of mesenchymal stem cells (MSCs) with telocytes (TCs) was found to have therapeutic effects, although the mechanism of intercellular communication is still unknown. Our current studies aim at exploring the potential molecular mechanisms of TCs interaction and communication with MSCs with a focus on integrin beta1 (ITGB1) in TCs. We found that the co-culture of MSCs with ITGB1-deleted TCs (TCITGB1-ko ) changed the proliferation, differentiation and growth dynamics ability of MSC in responses to LPS or PI3K inhibitor. Changes of MSC proliferation and apoptosis were accompanied with the dysregulation of cytokine mRNA expression in MSCs co-cultured with TCITGB1-ko during the exposure of PI3Kα/δ/ß inhibitor, of which IL-1ß, IL-6 and TNF-α increased, while IFN-γ, IL-4 and IL-10 decreased. The responses of PI3K p85, PI3K p110 and pAKT of MSCs co-cultured with TCITGB1-ko to LPS or PI3K inhibitor were opposite to those with ITGB1-presented TCs. The intraperitoneal injection of TCITGB1-ko , TCvector or MSCs alone, as well as the combination of MSCs with TCITGB1-ko or TCvector exhibited therapeutic effects on LPS-induced acute lung injury. Thus, our data indicate that telocyte ITGB1 contributes to the interaction and intercellular communication between MSCs and TCs, responsible for influencing other cell phenomes and functions.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Telócitos , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Telócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células , Pulmão/metabolismo
8.
J Cell Mol Med ; 27(2): 287-298, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606638

RESUMO

The aganglionic bowel in short-segment Hirschsprung's disease is characterized both by the absence of enteric ganglia and the presence of extrinsic thickened nerve bundles (TNBs). The relationship between the TNBs and the loss of enteric ganglia is unknown. Previous studies have described decreasing numbers of ganglia with increasing density of TNBs within the transition zone (TZ) between ganglionic and aganglionic gut, and there is some evidence of spatial contact between them in this region. To determine the cellular interactions involved, we have analysed the expression of perineurial markers of TNBs and enteric ganglionic markers for both neural cells and their ensheathing telocytes across four cranio-caudal segments consisting of most proximal ganglionic to most distal aganglionic from pull-through resected colon. We show that in the TZ, enteric ganglia are abnormal, being surrounded by perineurium cells characteristic of TNBs. Furthermore, short processes of ganglionic neurons extend caudally towards the aganglionic region, where telocytes in the TNB are located between the perineurium and nerve fibres into which they project telopodes. Thus, enteric ganglia within the TZ have abnormal structural characteristics, the cellular relationships of which are shared by the TNBs. These findings will help towards elucidation of the cellular mechanisms involved in the aetiology of Hirschsprung's disease.


Assuntos
Doença de Hirschsprung , Humanos , Lactente , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Colo/metabolismo , Gânglios/metabolismo , Fibras Nervosas , Nervos Periféricos/metabolismo
9.
Histochem Cell Biol ; 160(1): 11-25, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014442

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Pluripotentes , Telócitos , Animais , Camundongos , Antígenos CD34/metabolismo , Moléculas de Adesão Celular/metabolismo , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Baço , Células Estromais/metabolismo , Telócitos/metabolismo , Telócitos/patologia , Triptases/metabolismo , Vimentina/metabolismo
10.
Cell Biol Int ; 47(1): 110-122, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36273423

RESUMO

Telocytes (TCs) have crucial functions to promote the metastasis of hepatocellular carcinoma (HCC) by over-expressing matrix metalloproteinases (MMPs), but the mechanism by which TCs secrete MMPs in the genome is still unknown. We first cultured and isolated primary TCs from distinct liver cancer tissues and hepatic hemangioma surrounding tissues (Control group). Their whole exon genes were tested by Illumina HiSeq family of platforms and by high-throughput sequencing as well as variant mutations. Moreover, immunohistochemistry, Western blot, and quantitative reverse transcription-polymerase chain reaction assays were utilized to assess the expression of MMPs. The perniciousness of signal-nucleotide polymorphism (SNP) mutations of proteins were predicted by the Polyphen-2 database. Divergent expression and overall survival (OS) of MMPs was screened by StarBase-Pan Cancer plate; and MMPs associated signaling pathways were found by Kyoto Encyclopedia Genes and Genomes. The "competing endogenous RNA (ceRNA)" network was constructed by Cytoscape software. We found that 12 specific types of SNP mutations related to 5 types of MMPs occurred in TCs of liver malignant tumors as a potential result of MMP1, MMP9, and MMP17 overexpression. High levels of MMP1, MMP7, and MMP9 represented poor OS in HCC, and an interactive network of MMPs is shown. Allele shifts of C/T (rs20544) and G/C (rs2250889) in MMP9 were risk factors for TCs in HCC by the prediction of the Polyphen-2 Database. (MMP9 (-3 C/T)) mutation might be a genetic mechanism of upregulating MMP9 in TCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metaloproteinase 1 da Matriz , Metaloproteinase 7 da Matriz , Metaloproteinase 9 da Matriz , Humanos , Carcinoma Hepatocelular/genética , Biologia Computacional , Neoplasias Hepáticas/genética , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Mutação , Polimorfismo de Nucleotídeo Único , Metaloproteinase 7 da Matriz/genética
11.
Cell Biol Toxicol ; 39(2): 451-465, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978009

RESUMO

BACKGROUND: Telocytes (TCs) are experimentally evidenced as an alternative of cell therapies for organ tissue injury and repair. The aims of the present studies are to explore direct roles of TCs and the roles of TC-derived exosomes in support of experimental acute lung injury (ALI) in vivo or in vitro. MATERIALS AND METHODS: The roles of TCs in experimental ALI were firstly estimated. Phosphoinositide 3-kinase (PI3K) p110δ and α/δ/ß isoform inhibitors were used in study dynamic alterations of bio-behaviors, and in expression of functional factors of TCs per se and TC-co-cultured airway epithelial cells during the activation with lipopolysaccharide (LPS). TC-driven exosomes were furthermore characterized for intercellular communication by which activated or non-activated TCs interacted with epithelia. RESULTS: Our results showed that TCs mainly prevented from lung tissue edema and hemorrhage and decreased the levels of VEGF-A and MMP9 induced by LPS. Treatment with CAL101 (PI3K p110δ inhibitor) and LY294002 (PI3Kα/δ/ß inhibitor) could inhibit TC movement and differentiation and increase the number of dead TCs. The expression of Mtor, Hif1α, Vegf-a, or Mmp9 mRNA increased in TCs challenged with LPS, while Mtor, Hif1α, and Vegf-a even more increased after adding CAL101 or Mtor after adding LY. The rate of epithelial cell proliferation was higher in co-culture of human bronchial epithelial (HBE) and TCs than that in HBE alone under conditions with or without LPS challenge or when cells were treated with LPS and CAL101 or LY294002. The levels of mTOR, HIF1α, or VEGF-A significantly increased in mono-cultured or co-cultured cells, challenged with LPS as compared with those with vehicle. LPS-pretreated TC-derived exosomes upregulated the expression of AKT, p-AKT, HIF1α, and VEGF-A protein of HBE. CONCLUSION: The present study demonstrated that intraperitoneal administration of TCs ameliorated the severity of lung tissue edema accompanied by elevated expression of VEGF-A. TCs could nourish airway epithelial cells through nutrients produced from TCs, increasing epithelial cell proliferation, and differentiation as well as cell sensitivity to LPS challenge and PI3K p110δ and α/δ/ß inhibitors, partially through exosomes released from TCs.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Telócitos , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Telócitos/metabolismo
12.
Clin Exp Pharmacol Physiol ; 50(12): 964-972, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37715611

RESUMO

Pulmonary fibrosis (PF) is one of the common manifestations of end-stage lung disease. Chronic lung failure after lung transplantation is mainly caused by bronchiolitis obliterans syndrome (BOS) and is mainly characterized by lung tissue fibrosis. Pulmonary epithelial-mesenchymal transformation (EMT) is crucial for pulmonary fibrosis. Telocytes (TCs), a new type of mesenchymal cells, play a protective role in various acute injuries. For exploring the anti-pulmonary fibrosis effect of TCs in the BOS model in vitro and the related mechanism, rat tracheal epithelial (RTE) cells were treated with transforming growth factor-ß (TGF-ß) to simulate lung tissue fibrosis in vitro. The RTE cells were then co-cultured with TCs primarily extracted from rat lung tissue. Western blot, Seahorse XF Analysers and enzyme-linked immunosorbent assay were used to detect the level of EMT and aerobic respiration of RTE cells. Furthermore, anti-hepatocyte growth factor (anti-HGF) antibody was exogenously added to the cultured cells to explore further mechanisms. Moreover, hexokinase 2 (HK2) in RTE cells was knocked down to assess whether it influences the blocking effect of the anti-HGF antibody. TGF-ß could induce lung tissue fibrosis in RTE cells in vitro. Nevertheless, TCs co-culture decreased the level of EMT, glucose metabolic indicators (lactate and ATP) and oxygen levels. Furthermore, TCs released hepatocyte growth factor (HGF). Therefore, the exogenous addition of anti-HGF antibody in the co-culture system blocked the anti-lung tissue fibrosis effect. However, HK2 knockdown attenuated the blocking effect of the anti-HGF antibody. In conclusion, TCs can protect against lung tissue fibrosis by releasing HGF, a process dependent on HK2.


Assuntos
Fibrose Pulmonar , Telócitos , Animais , Ratos , Fibrose , Fator de Crescimento de Hepatócito/metabolismo , Hexoquinase , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Telócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
13.
J Reprod Dev ; 69(2): 87-94, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754390

RESUMO

Uterine peristalsis is essential for gamete transport and embryo implantation. It shares the characteristics of spontaneity, rhythmicity, and directivity with gastrointestinal peristalsis. Telocytes, the "interstitial Cajal-like cells" outside the digestive canal, are also located in the uterus and may act as pacemakers. To investigate the possible origin and regulatory mechanism of periodic uterine peristalsis in the human menstrual cycle, telocytes in the myometrium were studied to determine the effect of estradiol on T-type calcium channel regulation. In this study, biopsies of the human myometrium were obtained for cell culture, and double-labeling immunofluorescence screening was used to identify telocytes and T-type calcium channel expression. Intracellular calcium signal measurements and patch-clamp recordings were used to investigate the role of T-type calcium channels in regulating calcium currents with or without estradiol. Our study demonstrates that telocytes exist in the human uterus and express T-type calcium channels. The intracellular Ca2+ fluorescence intensity marked by Fluo-4AM was dramatically decreased by NNC 55-0396, a highly selective T-type calcium channel blocker, but enhanced by estradiol. T-type calcium current amplitude increased in telocytes incubated with estradiol in a dose-dependent manner compared to the control group. In conclusion, our study demonstrated that telocytes exist in the human myometrium, expressing T-type calcium channels and estradiol-enhanced T-type calcium currents, which may be a reasonable explanation for the origin of uterine peristalsis. The role of telocytes in the human uterus as pacemakers and message transfer stations in uterine peristalsis may be worth further investigation.


Assuntos
Canais de Cálcio Tipo T , Telócitos , Feminino , Humanos , Miométrio/metabolismo , Miométrio/patologia , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Cálcio/metabolismo , Telócitos/metabolismo , Telócitos/patologia
14.
Microsc Microanal ; 29(5): 1746-1754, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37639834

RESUMO

Electroacupuncture has been generally applied to target obesity, the principle of which is based on the meridian in traditional Chinese medicine. Although Telocytes (TCs) have been reported as the potential essence of meridians, their specific role in the electroacupuncture treatment of obesity remains unclear. Thus, we investigated the cellular evidence for TC-mediated electroacupuncture to alleviate obesity. Mice were divided into three groups as follows: electroacupuncture group (EA), control group (CG), and normal group (NG). The present study showed that the weight of perirenal white adipose tissue (rWAT), the serum level of total cholesterol, and the low-density lipoprotein cholesterol were all significantly decreased after electroacupuncture. Ultrastructurally, the prolongations (telopodes, Tps) of TCs were in direct contact with adipocytes, and lipid droplets were distributed on the surface of Tps. The proportions of double-positive fluorescent areas of TCs (CD34 and PDGFRα) were significantly elevated with concomitant elongated Tps in EA mice, as compared to those in CG mice. The expression of Cx43 and CD63 (gap junction and exosome markers) was significantly enhanced. These characteristics facilitated the transmission of electroacupuncture stimulation from skin to rWAT. We conclude that electroacupuncture relieved obesity by activating TCs morphologically, upregulating the gap junctions between TCs, and increasing the exosomes around TCs.


Assuntos
Eletroacupuntura , Exossomos , Telócitos , Animais , Camundongos , Exossomos/metabolismo , Colesterol/metabolismo
15.
Microsc Microanal ; 29(2): 658-664, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749715

RESUMO

Telocytes (TCs), a novel type of interstitial cells, are characterized by their smaller cellular body and extremely long, thin processes which are called telopodes (Tps). They have been described in multiple organs from diverse animals. Currently, the existence of TCs in rat pars distalis (PD) has remained unexplored. This investigation was undertaken to visualize the distribution and structural features of TCs in the PD using immunofluorescence (IF) and further validated by transmission electron microscopy (TEM). HE staining revealed the presence of interstitial cells in the peri-sinusoidal vessels spaces of the PD. Using IF, CD34/vimentin double-positive interstitial cells were identified as TCs in accordance with identification standards. TEM further verified the presence of TCs based on their unique ultrastructural features. TCs exhibited communication structures including cell connections and extracellular vesicles (EVs). Interestingly, TCs were in close proximity to the nerves. Most importantly, Tps extended toward the nerves, blood vessels, and glandular cells. TCs could be the structural foundation of a third regulatory system in rat PD according to the tight connections of TCs with sinusoid vessels, glandular cells, EVs and most crucially the nerves. Taken together, these morphological and structural findings demonstrate that TCs are vital components of the rat PD.


Assuntos
Células Intersticiais de Cajal , Telócitos , Animais , Ratos , Células Epiteliais , Microscopia Eletrônica de Transmissão , Hipófise
16.
Microsc Microanal ; 29(2): 762-776, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749732

RESUMO

Allergic contact dermatitis (ACD) is an occupation-dependent skin disease that afflicts humans with recurrent, non-specific episodes. Telocyte (TC) is a novel interstitial cell discovered in recent years and, together with fibroblasts, constitutes the predominant interstitial cell population in the skin. The purpose of this study was to investigate the morphodynamic changes of interstitial cells, especially TCs, in the skin during the development and treatment of ACD by histological and microscopic scientific methods. Hematoxylin-eosin staining, Masson staining, immunohistochemistry (IHC), immunofluorescence (IF), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to track morphodynamic changes in interstitial cells during the development and treatment in the ACD-involved skin induced by 2,4-dinitrochlorobenzene (DNCB). The results demonstrated that TCs were mainly present around dermal collagen fibers, perivascular (except dermal papillary vascular loop), and skin appendages, which expressed CD34+, Vimentin+, PDGFR-α+, and α-SMA-. The absence of TCs during ACD development and after ACD recovery causes dermal interstitial cell dysregulation. The special anatomical relationships between TCs, immune cells, and follicular stem cells were also revealed, suggesting their potential dermatitis-regulating function. In a nutshell, our results provide morphodynamic evidence for the process of ACD development and recovery and offer potential cytological ideas for ACD treatment.


Assuntos
Dermatite Alérgica de Contato , Células Intersticiais de Cajal , Telócitos , Humanos , Telócitos/ultraestrutura , Pele/patologia , Dermatite Alérgica de Contato/patologia , Imuno-Histoquímica
17.
Microsc Microanal ; 29(6): 2204-2217, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992277

RESUMO

Telocytes and keratocytes are important cells that maintain the structure and function of the cornea. The buffalo cornea, known for its resilience in harsh conditions, has not been extensively studied regarding the presence and role of telocytes and keratocytes. We used light microscopy, transmission electron microscopy (TEM), and immunofluorescence assays with platelet-derived growth factor receptor alpha (PDGFRα), CD34, and Vimentin markers to investigate their expression and localization in the cornea. TEM analysis confirmed the presence of spindle-shaped keratocytes with intercellular connections, while telocytes exhibited small spindle-shaped bodies with long, thin branches connecting to corneal keratocytes. Immunofluorescence findings showed that CD34 was more abundant near the endothelium, Vimentin was prominently expressed near the epithelium, and PDGFRα was uniformly distributed throughout the corneal stroma. Co-expression of CD34 and Vimentin, PDGFRα and Vimentin, as well as CD34 and PDGFRα, was observed in keratocytes and telocytes within the stroma, indicating the potential presence of mesenchymal cells. These results suggest the involvement of telocytes and keratocytes in corneal wound healing, transparency maintenance, and homeostasis. The co-expression of these markers highlights the critical role of telocytes and keratocytes in regulating corneal physiological functions, further enhancing our understanding of corneal biology in the buffalo model.


Assuntos
Substância Própria , Telócitos , Substância Própria/metabolismo , Vimentina , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Telócitos/metabolismo , Microscopia Eletrônica de Transmissão , Imunofluorescência
18.
Arch Gynecol Obstet ; 307(1): 39-49, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35668319

RESUMO

Endometriosis involving the presence and growth of glands and stroma outside the uterine cavity is a common, inflammatory, benign gynecologic disease. Nevertheless, no single theory can exactly account for the pathogenesis of endometriosis. Telocytes, a kind of novel mesenchymal cells, have been suggested to be crucial in promoting angiogenesis and increasing the activity of endometrial interstitial cells and inflammatory cells. Given above roles, telocytes may be considered as the possible pathogenesis of endometriosis. We reviewed the current literature on telocytes. The following aspects were considered: (A) the telocytes' typical characteristics, function, and morphological changes in endometriosis; (B) the potential role of telocytes in endometriosis by impacting the inflammation, invasion, and angiogenesis; (C) telocytes as the potential treatment options for endometriosis.


Assuntos
Endometriose , Telócitos , Feminino , Humanos , Endometriose/patologia , Útero/patologia , Telócitos/patologia , Inflamação/patologia , Endométrio/patologia
19.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835203

RESUMO

Kaposi sarcoma (KS) is an angioproliferative lesion in which two main KS cell sources are currently sustained: endothelial cells (ECs) and mesenchymal/stromal cells. Our objective is to establish the tissue location, characteristics and transdifferentiation steps to the KS cells of the latter. For this purpose, we studied specimens of 49 cases of cutaneous KS using immunochemistry and confocal and electron microscopy. The results showed that delimiting CD34+ stromal cells/Telocytes (CD34+SCs/TCs) in the external layer of the pre-existing blood vessels and around skin appendages form small convergent lumens, express markers for ECs of blood and lymphatic vessels, share ultrastructural characteristics with ECs and participate in the origin of two main types of neovessels, the evolution of which gives rise to lymphangiomatous or spindle-cell patterns-the substrate of the main KS histopathological variants. Intraluminal folds and pillars (papillae) are formed in the neovessels, which suggests they increase by vessel splitting (intussusceptive angiogenesis and intussusceptive lymphangiogenesis). In conclusion, delimiting CD34+SCs/TCs are mesenchymal/stromal cells that can transdifferentiate into KS ECs, participating in the formation of two types of neovessels. The subsequent growth of the latter involves intussusceptive mechanisms, originating several KS variants. These findings are of histogenic, clinical and therapeutic interest.


Assuntos
Sarcoma de Kaposi , Neoplasias Cutâneas , Células Estromais , Telócitos , Humanos , Antígenos CD34/metabolismo , Células Endoteliais/metabolismo , Sarcoma de Kaposi/patologia , Neoplasias Cutâneas/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Telócitos/metabolismo , Telócitos/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
20.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569493

RESUMO

Telocytes/CD34+ stromal cells (TCs/CD34+ SCs) have been studied in numerous organs and tissues, but their presence and characteristics in the parathyroid glands have not been explored. Using immunological and ultrastructural procedures, we assess the location, arrangement, and behavior of TCs/CD34+ SCs in normal human parathyroids, during their development and in their most frequent pathologic conditions. In normal parathyroids, TCs/CD34+ SCs show a small somatic body and long thin processes with a moniliform aspect, form labyrinthine systems, connect other neighboring TCs/CD34+ SCs, vessels, adipocytes, and parenchymal cells directly or by extracellular vesicles, and associate with collagen I. TCs/CD34+ SCs and collagen I are absent around vessels and adipocytes within parenchymal clusters. In developing parathyroids, TCs/CD34+ SC surround small parenchymal nests and adipocytes. In hyperplastic parathyroids, TCs/CD34+ SCs are prominent in some thickened internodular septa and surround small extraglandular parenchymal cell nests. TCs/CD34+ SCs are present in delimiting regions with compressed parathyroids and their capsule in adenomas but absent in most adenomatous tissue. In conclusion, TCs/CD34+ SCs are an important cellular component in the human parathyroid stroma, except around vessels within parenchymal nests. They show typical characteristics, including those of connecting cells, are present in developing parathyroids, and participate in the most frequent parathyroid pathology, including hyperplastic and adenomatous parathyroids.


Assuntos
Adenoma , Neoplasias das Paratireoides , Telócitos , Humanos , Glândulas Paratireoides , Células Estromais/ultraestrutura , Antígenos CD34 , Hiperplasia , Moléculas de Adesão Celular , Colágeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA