Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 24, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350964

RESUMO

BACKGROUND: Freezing of gait (FOG) is an episodic and highly disabling symptom of Parkinson's Disease (PD). Traditionally, FOG assessment relies on time-consuming visual inspection of camera footage. Therefore, previous studies have proposed portable and automated solutions to annotate FOG. However, automated FOG assessment is challenging due to gait variability caused by medication effects and varying FOG-provoking tasks. Moreover, whether automated approaches can differentiate FOG from typical everyday movements, such as volitional stops, remains to be determined. To address these questions, we evaluated an automated FOG assessment model with deep learning (DL) based on inertial measurement units (IMUs). We assessed its performance trained on all standardized FOG-provoking tasks and medication states, as well as on specific tasks and medication states. Furthermore, we examined the effect of adding stopping periods on FOG detection performance. METHODS: Twelve PD patients with self-reported FOG (mean age 69.33 ± 6.02 years) completed a FOG-provoking protocol, including timed-up-and-go and 360-degree turning-in-place tasks in On/Off dopaminergic medication states with/without volitional stopping. IMUs were attached to the pelvis and both sides of the tibia and talus. A temporal convolutional network (TCN) was used to detect FOG episodes. FOG severity was quantified by the percentage of time frozen (%TF) and the number of freezing episodes (#FOG). The agreement between the model-generated outcomes and the gold standard experts' video annotation was assessed by the intra-class correlation coefficient (ICC). RESULTS: For FOG assessment in trials without stopping, the agreement of our model was strong (ICC (%TF) = 0.92 [0.68, 0.98]; ICC(#FOG) = 0.95 [0.72, 0.99]). Models trained on a specific FOG-provoking task could not generalize to unseen tasks, while models trained on a specific medication state could generalize to unseen states. For assessment in trials with stopping, the agreement of our model was moderately strong (ICC (%TF) = 0.95 [0.73, 0.99]; ICC (#FOG) = 0.79 [0.46, 0.94]), but only when stopping was included in the training data. CONCLUSION: A TCN trained on IMU signals allows valid FOG assessment in trials with/without stops containing different medication states and FOG-provoking tasks. These results are encouraging and enable future work investigating automated FOG assessment during everyday life.


Assuntos
Aprendizado Profundo , Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/diagnóstico , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Marcha , Movimento
2.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000977

RESUMO

(1) Background: The objective of this study was to predict the vascular health status of elderly women during exercise using pulse wave data and Temporal Convolutional Neural Networks (TCN); (2) Methods: A total of 492 healthy elderly women aged 60-75 years were recruited for the study. The study utilized a cross-sectional design. Vascular endothelial function was assessed non-invasively using Flow-Mediated Dilation (FMD). Pulse wave characteristics were quantified using photoplethysmography (PPG) sensors, and motion-induced noise in the PPG signals was mitigated through the application of a recursive least squares (RLS) adaptive filtering algorithm. A fixed-load cycling exercise protocol was employed. A TCN was constructed to classify flow-mediated dilation (FMD) into "optimal", "impaired", and "at risk" levels; (3) Results: TCN achieved an average accuracy of 79.3%, 84.8%, and 83.2% in predicting FMD at the "optimal", "impaired", and "at risk" levels, respectively. The results of the analysis of variance (ANOVA) comparison demonstrated that the accuracy of the TCN in predicting FMD at the impaired and at-risk levels was significantly higher than that of Long Short-Term Memory (LSTM) networks and Random Forest algorithms; (4) Conclusions: The use of pulse wave data during exercise combined with the TCN for predicting the vascular health status of elderly women demonstrated high accuracy, particularly in predicting impaired and at-risk FMD levels. This indicates that the integration of exercise pulse wave data with TCN can serve as an effective tool for the assessment and monitoring of the vascular health of elderly women.


Assuntos
Exercício Físico , Redes Neurais de Computação , Fotopletismografia , Análise de Onda de Pulso , Humanos , Feminino , Fotopletismografia/métodos , Idoso , Análise de Onda de Pulso/métodos , Exercício Físico/fisiologia , Pessoa de Meia-Idade , Estudos Transversais , Algoritmos
3.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000985

RESUMO

(1) Background: The objective of this study was to recognize tai chi movements using inertial measurement units (IMUs) and temporal convolutional neural networks (TCNs) and to provide precise interventions for elderly people. (2) Methods: This study consisted of two parts: firstly, 70 skilled tai chi practitioners were used for movement recognition; secondly, 60 elderly males were used for an intervention study. IMU data were collected from skilled tai chi practitioners performing Bafa Wubu, and TCN models were constructed and trained to classify these movements. Elderly participants were divided into a precision intervention group and a standard intervention group, with the former receiving weekly real-time IMU feedback. Outcomes measured included balance, grip strength, quality of life, and depression. (3) Results: The TCN model demonstrated high accuracy in identifying tai chi movements, with percentages ranging from 82.6% to 94.4%. After eight weeks of intervention, both groups showed significant improvements in grip strength, quality of life, and depression. However, only the precision intervention group showed a significant increase in balance and higher post-intervention scores compared to the standard intervention group. (4) Conclusions: This study successfully employed IMU and TCN to identify Tai Chi movements and provide targeted feedback to older participants. Real-time IMU feedback can enhance health outcome indicators in elderly males.


Assuntos
Movimento , Redes Neurais de Computação , Qualidade de Vida , Tai Chi Chuan , Humanos , Tai Chi Chuan/métodos , Idoso , Masculino , Movimento/fisiologia , Força da Mão/fisiologia , Equilíbrio Postural/fisiologia , Feminino , Depressão/terapia
4.
Pediatr Cardiol ; 44(8): 1726-1735, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596420

RESUMO

To extract weak fetal ECG signals from the mixed ECG signal on the mother's abdominal wall, providing a basis for accurately estimating fetal heart rate and analyzing fetal ECG morphology. First, based on the relationship between the maternal chest ECG signal and the maternal ECG component in the abdominal signal, the temporal convolutional encoder-decoder network (TCED-Net) model is trained to fit the nonlinear transmission of the maternal ECG signal from the chest to the abdominal wall. Then, the maternal chest ECG signal is nonlinearly transformed to estimate the maternal ECG component in the abdominal mixed signal. Finally, the estimated maternal ECG component is subtracted from the abdominal mixed signal to obtain the fetal ECG component. The simulation results on the FECGSYN dataset show that the proposed approach achieves the best performance in F1 score, mean square error (MSE), and quality signal-to-noise ratio (qSNR) (98.94%, 0.18, and 8.30, respectively). On the NI-FECG dataset, although the fetal ECG component is small in energy in the mixed signal, this method can effectively suppress the maternal ECG component and thus extract a clearer and more accurate fetal ECG signal. Compared with existing algorithms, the proposed method can extract clearer fetal ECG signals, which has significant application value for effective fetal health monitoring during pregnancy.


Assuntos
Monitorização Fetal , Processamento de Sinais Assistido por Computador , Feminino , Gravidez , Humanos , Monitorização Fetal/métodos , Algoritmos , Simulação por Computador , Eletrocardiografia/métodos
5.
J Neuroeng Rehabil ; 19(1): 48, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597950

RESUMO

BACKGROUND: Freezing of gait (FOG) is a common and debilitating gait impairment in Parkinson's disease. Further insight into this phenomenon is hampered by the difficulty to objectively assess FOG. To meet this clinical need, this paper proposes an automated motion-capture-based FOG assessment method driven by a novel deep neural network. METHODS: Automated FOG assessment can be formulated as an action segmentation problem, where temporal models are tasked to recognize and temporally localize the FOG segments in untrimmed motion capture trials. This paper takes a closer look at the performance of state-of-the-art action segmentation models when tasked to automatically assess FOG. Furthermore, a novel deep neural network architecture is proposed that aims to better capture the spatial and temporal dependencies than the state-of-the-art baselines. The proposed network, termed multi-stage spatial-temporal graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN). The ST-GCN captures the hierarchical spatial-temporal motion among the joints inherent to motion capture, while the multi-stage component reduces over-segmentation errors by refining the predictions over multiple stages. The proposed model was validated on a dataset of fourteen freezers, fourteen non-freezers, and fourteen healthy control subjects. RESULTS: The experiments indicate that the proposed model outperforms four state-of-the-art baselines. Moreover, FOG outcomes derived from MS-GCN predictions had an excellent (r = 0.93 [0.87, 0.97]) and moderately strong (r = 0.75 [0.55, 0.87]) linear relationship with FOG outcomes derived from manual annotations. CONCLUSIONS: The proposed MS-GCN may provide an automated and objective alternative to labor-intensive clinician-based FOG assessment. Future work is now possible that aims to assess the generalization of MS-GCN to a larger and more varied verification cohort.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Movimento (Física) , Redes Neurais de Computação , Doença de Parkinson/complicações
6.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161797

RESUMO

As artificial neural network architectures grow increasingly more efficient in time-series prediction tasks, their use for day-ahead electricity price and demand prediction, a task with very specific rules and highly volatile dataset values, grows more attractive. Without a standardized way to compare the efficiency of algorithms and methods for forecasting electricity metrics, it is hard to have a good sense of the strengths and weaknesses of each approach. In this paper, we create models in several neural network architectures for predicting the electricity price on the HUPX market and electricity load in Montenegro and compare them to multiple neural network models on the same basis (using the same dataset and metrics). The results show the promising efficiency of neural networks in general for the task of short-term prediction in the field, with methods combining fully connected layers and recurrent neural or temporal convolutional layers performing the best. The feature extraction power of convolutional layers shows very promising results and recommends the further exploration of temporal convolutional networks in the field.


Assuntos
Benchmarking , Redes Neurais de Computação , Algoritmos , Eletricidade , Previsões
7.
Sensors (Basel) ; 19(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30708971

RESUMO

The detection of seismic events at regional and teleseismic distances is critical to Nuclear Treaty Monitoring. Traditionally, detecting regional and teleseismic events has required the use of an expensive multi-instrument seismic array; however in this work, we present DeepPick, a novel seismic detection algorithm capable of array-like detection performance from a single-trace. We achieve this performance through three novel steps: First, a high-fidelity dataset is constructed by pairing array-beam catalog arrival-times with single-trace waveforms from the reference instrument of the array. Second, an idealized characteristic function is created, with exponential peaks aligned to the cataloged arrival times. Third, a deep temporal convolutional neural network is employed to learn the complex non-linear filters required to transform the single-trace waveforms into corresponding idealized characteristic functions. The training data consists of all arrivals in the International Seismological Centre Database for seven seismic arrays over a five year window from 1 January 2010 to 1 January 2015, yielding a total training set of 608,362 detections. The test set consists of the same seven arrays over a one year window from 1 January 2015 to 1 January 2016. We report our results by training the algorithm on six of the arrays and testing it on the seventh, so as to demonstrate the generalization and transportability of the technique to new stations. Detection performance against this test set is outstanding, yielding significant improvements in recall over existing techniques. Fixing a type-I error rate of 0.001, the algorithm achieves an overall recall (true positive rate) of 56% against the 141,095 array-beam arrivals in the test set, yielding 78,802 correct detections. This is more than twice the 37,572 detections made by an STA/LTA detector over the same period, and represents a 35% improvement over the 58,515 detections made by a state-of-the-art kurtosis-based detector. Furthermore, DeepPick provides at least a 4 dB improvement in detector sensitivity across the board, and is more computationally efficient, with run-times an order of magnitude faster than either of the other techniques tested. These results demonstrate the potential of our algorithm to significantly enhance the effectiveness of the global treaty monitoring network.

8.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(11): 1672-1680, 2022 Nov 20.
Artigo em Zh | MEDLINE | ID: mdl-36504060

RESUMO

OBJECTIVE: To extract weak fetal ECG signals from mixed ECG signals recorded from maternal abdominal wall for accurate analysis of fetal heart rate and fetal ECG patterns. METHODS: By exploiting the superior nonlinear mapping ability of deep convolutional network, we developed a nonlinear adaptive noise cancelling (nonlinear ANC) extraction framework based on a temporal convolutional encoder-decoder network for extracting fetal ECG signals. We first constructed a deep temporal convolutional network (TCED-Net) model for fetal ECG signal extraction, and with the maternal chest ECG signal as the reference signal, the maternal ECG component in the abdominal mixed signal was estimated using this model. The estimated maternal ECG component was subtracted from the mixed abdominal ECG signals to obtain the fetal ECG component. Experimental analyses were performed using synthetic ECG signals (FECGSYNDB) and clinical ECG signals (NIFECGDB, PCDB) to test the performance of the propose method. RESULTS: The results of experiments on the FECGSYNDB dataset showed that the proposed approach achieved good performance in F1-score (98.89%), mean-square-error (MSE; 0.20) and quality signalto-noise ratio (qSNR; 7.84). The F1- score reached 99.1% on the NIFECGDB dataset and 98.61% on the PCDB dataset. The R peak detection accuracy index of the proposed method was higher than the existing best-performing algorithms such as EKF (F1=93.84%), ES-RNN (F1=97.20%) and AECG-DecompNet (F1=95.43%) by 5.05%, 1.9% and 3.18%, respectively. CONCLUSION: The fetal ECG signals extracted using the proposed method are clearer than those by the existing algorithms, suggesting the potential value this method for effective fetal health monitoring during pregnancy.


Assuntos
Algoritmos , Eletrocardiografia , Feminino , Gravidez , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA