Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 289: 120548, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382863

RESUMO

An essential priority of visual brain-computer interfaces (BCIs) is to enhance the information transfer rate (ITR) to achieve high-speed communication. Despite notable progress, noninvasive visual BCIs have encountered a plateau in ITRs, leaving it uncertain whether higher ITRs are achievable. In this study, we used information theory to study the characteristics and capacity of the visual-evoked channel, which leads us to investigate whether and how we can decode higher information rates in a visual BCI system. Using information theory, we estimate the upper and lower bounds of the information rate with the white noise (WN) stimulus. Consequently, we found out that the information rate is determined by the signal-to-noise ratio (SNR) in the frequency domain, which reflects the spectrum resources of the channel. Based on this discovery, we propose a broadband WN BCI by implementing stimuli on a broader frequency band than the steady-state visual evoked potentials (SSVEPs)-based BCI. Through validation, the broadband BCI outperforms the SSVEP BCI by an impressive 7 bps, setting a record of 50 bps. The integration of information theory and the decoding analysis presented in this study offers valuable insights applicable to general sensory-evoked BCIs, providing a potential direction of next-generation human-machine interaction systems.


Assuntos
Interfaces Cérebro-Computador , Humanos , Potenciais Evocados Visuais , Eletroencefalografia , Razão Sinal-Ruído , Comunicação , Estimulação Luminosa , Algoritmos
2.
Cereb Cortex ; 33(22): 11080-11091, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37814353

RESUMO

When we pay attention to someone, do we focus only on the sound they make, the word they use, or do we form a mental space shared with the speaker we want to pay attention to? Some would argue that the human language is no other than a simple signal, but others claim that human beings understand each other because they form a shared mental ground between the speaker and the listener. Our study aimed to explore the neural mechanisms of speech-selective attention by investigating the electroencephalogram-based neural coupling between the speaker and the listener in a cocktail party paradigm. The temporal response function method was employed to reveal how the listener was coupled to the speaker at the neural level. The results showed that the neural coupling between the listener and the attended speaker peaked 5 s before speech onset at the delta band over the left frontal region, and was correlated with speech comprehension performance. In contrast, the attentional processing of speech acoustics and semantics occurred primarily at a later stage after speech onset and was not significantly correlated with comprehension performance. These findings suggest a predictive mechanism to achieve speaker-listener neural coupling for successful speech comprehension.


Assuntos
Percepção da Fala , Fala , Humanos , Fala/fisiologia , Percepção da Fala/fisiologia , Eletroencefalografia , Idioma , Acústica da Fala
3.
Neuroimage ; 268: 119894, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693596

RESUMO

Listening to speech with poor signal quality is challenging. Neural speech tracking of degraded speech has been used to advance the understanding of how brain processes and speech intelligibility are interrelated. However, the temporal dynamics of neural speech tracking and their relation to speech intelligibility are not clear. In the present MEG study, we exploited temporal response functions (TRFs), which has been used to describe the time course of speech tracking on a gradient from intelligible to unintelligible degraded speech. In addition, we used inter-related facets of neural speech tracking (e.g., speech envelope reconstruction, speech-brain coherence, and components of broadband coherence spectra) to endorse our findings in TRFs. Our TRF analysis yielded marked temporally differential effects of vocoding: ∼50-110 ms (M50TRF), ∼175-230 ms (M200TRF), and ∼315-380 ms (M350TRF). Reduction of intelligibility went along with large increases of early peak responses M50TRF, but strongly reduced responses in M200TRF. In the late responses M350TRF, the maximum response occurred for degraded speech that was still comprehensible then declined with reduced intelligibility. Furthermore, we related the TRF components to our other neural "tracking" measures and found that M50TRF and M200TRF play a differential role in the shifting center frequency of the broadband coherence spectra. Overall, our study highlights the importance of time-resolved computation of neural speech tracking and decomposition of coherence spectra and provides a better understanding of degraded speech processing.


Assuntos
Inteligibilidade da Fala , Percepção da Fala , Humanos , Inteligibilidade da Fala/fisiologia , Percepção da Fala/fisiologia , Encéfalo/fisiologia , Percepção Auditiva , Cognição , Estimulação Acústica
4.
Neuroimage ; 282: 120404, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806465

RESUMO

Despite the distortion of speech signals caused by unavoidable noise in daily life, our ability to comprehend speech in noisy environments is relatively stable. However, the neural mechanisms underlying reliable speech-in-noise comprehension remain to be elucidated. The present study investigated the neural tracking of acoustic and semantic speech information during noisy naturalistic speech comprehension. Participants listened to narrative audio recordings mixed with spectrally matched stationary noise at three signal-to-ratio (SNR) levels (no noise, 3 dB, -3 dB), and 60-channel electroencephalography (EEG) signals were recorded. A temporal response function (TRF) method was employed to derive event-related-like responses to the continuous speech stream at both the acoustic and the semantic levels. Whereas the amplitude envelope of the naturalistic speech was taken as the acoustic feature, word entropy and word surprisal were extracted via the natural language processing method as two semantic features. Theta-band frontocentral TRF responses to the acoustic feature were observed at around 400 ms following speech fluctuation onset over all three SNR levels, and the response latencies were more delayed with increasing noise. Delta-band frontal TRF responses to the semantic feature of word entropy were observed at around 200 to 600 ms leading to speech fluctuation onset over all three SNR levels. The response latencies became more leading with increasing noise and decreasing speech comprehension and intelligibility. While the following responses to speech acoustics were consistent with previous studies, our study revealed the robustness of leading responses to speech semantics, which suggests a possible predictive mechanism at the semantic level for maintaining reliable speech comprehension in noisy environments.


Assuntos
Compreensão , Percepção da Fala , Humanos , Compreensão/fisiologia , Semântica , Fala/fisiologia , Percepção da Fala/fisiologia , Eletroencefalografia , Acústica , Estimulação Acústica
5.
Int J Audiol ; 62(3): 199-208, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35152811

RESUMO

OBJECTIVE: To explore the detection of cortical responses to continuous speech using a single EEG channel. Particularly, to compare detection rates and times using a cross-correlation approach and parameters extracted from the temporal response function (TRF). DESIGN: EEG from 32-channels were recorded whilst presenting 25-min continuous English speech. Detection parameters were cross-correlation between speech and EEG (XCOR), peak value and power of the TRF filter (TRF-peak and TRF-power), and correlation between predicted TRF and true EEG (TRF-COR). A bootstrap analysis was used to determine response statistical significance. Different electrode configurations were compared: Using single channels Cz or Fz, or selecting channels with the highest correlation value. STUDY SAMPLE: Seventeen native English-speaking subjects with mild-to-moderate hearing loss. RESULTS: Significant cortical responses were detected from all subjects at Fz channel with XCOR and TRF-COR. Lower detection time was seen for XCOR (mean = 4.8 min) over TRF parameters (best TRF-COR, mean = 6.4 min), with significant time differences from XCOR to TRF-peak and TRF-power. Analysing multiple EEG channels and testing channels with the highest correlation between envelope and EEG reduced detection sensitivity compared to Fz alone. CONCLUSIONS: Cortical responses to continuous speech can be detected from a single channel with recording times that may be suitable for clinical application.


Assuntos
Perda Auditiva , Percepção da Fala , Humanos , Eletroencefalografia , Fala , Percepção da Fala/fisiologia
6.
Eur J Neurosci ; 56(8): 5201-5214, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35993240

RESUMO

Speech comprehension relies on the ability to understand words within a coherent context. Recent studies have attempted to obtain electrophysiological indices of this process by modelling how brain activity is affected by a word's semantic dissimilarity to preceding words. Although the resulting indices appear robust and are strongly modulated by attention, it remains possible that, rather than capturing the contextual understanding of words, they may actually reflect word-to-word changes in semantic content without the need for a narrative-level understanding on the part of the listener. To test this, we recorded electroencephalography from subjects who listened to speech presented in either its original, narrative form, or after scrambling the word order by varying amounts. This manipulation affected the ability of subjects to comprehend the speech narrative but not the ability to recognise individual words. Neural indices of semantic understanding and low-level acoustic processing were derived for each scrambling condition using the temporal response function. Signatures of semantic processing were observed when speech was unscrambled or minimally scrambled and subjects understood the speech. The same markers were absent for higher scrambling levels as speech comprehension dropped. In contrast, word recognition remained high and neural measures related to envelope tracking did not vary significantly across scrambling conditions. This supports the previous claim that electrophysiological indices based on the semantic dissimilarity of words to their context reflect a listener's understanding of those words relative to that context. It also highlights the relative insensitivity of neural measures of low-level speech processing to speech comprehension.


Assuntos
Semântica , Percepção da Fala , Percepção Auditiva/fisiologia , Compreensão/fisiologia , Eletroencefalografia , Humanos , Fala/fisiologia , Percepção da Fala/fisiologia
7.
Neuroimage ; 204: 116211, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31546052

RESUMO

A common problem in neural recordings is the low signal-to-noise ratio (SNR), particularly when using non-invasive techniques like magneto- or electroencephalography (M/EEG). To address this problem, experimental designs often include repeated trials, which are then averaged to improve the SNR or to infer statistics that can be used in the design of a denoising spatial filter. However, collecting enough repeated trials is often impractical and even impossible in some paradigms, while analyses on existing data sets may be hampered when these do not contain such repeated trials. Therefore, we present a data-driven method that takes advantage of the knowledge of the presented stimulus, to achieve a joint noise reduction and dimensionality reduction without the need for repeated trials. The method first estimates the stimulus-driven neural response using the given stimulus, which is then used to find a set of spatial filters that maximize the SNR based on a generalized eigenvalue decomposition. As the method is fully data-driven, the dimensionality reduction enables researchers to perform their analyses without having to rely on their knowledge of brain regions of interest, which increases accuracy and reduces the human factor in the results. In the context of neural tracking of a speech stimulus using EEG, our method resulted in more accurate short-term temporal response function (TRF) estimates, higher correlations between predicted and actual neural responses, and higher attention decoding accuracies compared to existing TRF-based decoding methods. We also provide an extensive discussion on the central role played by the generalized eigenvalue decomposition in various denoising methods in the literature, and address the conceptual similarities and differences with our proposed method.


Assuntos
Algoritmos , Atenção/fisiologia , Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Eletroencefalografia/normas , Neuroimagem Funcional/métodos , Processamento de Sinais Assistido por Computador , Adolescente , Adulto , Artefatos , Feminino , Neuroimagem Funcional/normas , Humanos , Masculino , Reprodutibilidade dos Testes , Estudos de Caso Único como Assunto , Percepção da Fala/fisiologia , Fatores de Tempo , Adulto Jovem
8.
Cereb Cortex ; 29(4): 1561-1571, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788144

RESUMO

Segregating concurrent sound streams is a computationally challenging task that requires integrating bottom-up acoustic cues (e.g. pitch) and top-down prior knowledge about sound streams. In a multi-talker environment, the brain can segregate different speakers in about 100 ms in auditory cortex. Here, we used magnetoencephalographic (MEG) recordings to investigate the temporal and spatial signature of how the brain utilizes prior knowledge to segregate 2 speech streams from the same speaker, which can hardly be separated based on bottom-up acoustic cues. In a primed condition, the participants know the target speech stream in advance while in an unprimed condition no such prior knowledge is available. Neural encoding of each speech stream is characterized by the MEG responses tracking the speech envelope. We demonstrate that an effect in bilateral superior temporal gyrus and superior temporal sulcus is much stronger in the primed condition than in the unprimed condition. Priming effects are observed at about 100 ms latency and last more than 600 ms. Interestingly, prior knowledge about the target stream facilitates speech segregation by mainly suppressing the neural tracking of the non-target speech stream. In sum, prior knowledge leads to reliable speech segregation in auditory cortex, even in the absence of reliable bottom-up speech segregation cue.


Assuntos
Córtex Auditivo/fisiologia , Sinais (Psicologia) , Percepção da Fala/fisiologia , Estimulação Acústica , Adolescente , Adulto , Atenção , Feminino , Humanos , Magnetoencefalografia , Masculino , Acústica da Fala , Adulto Jovem
9.
Neuroimage ; 202: 116060, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362048

RESUMO

Electroencephalography (EEG) continues to be the most popular method to investigate cognitive brain mechanisms in young children and infants. Most infant studies rely on the well-established and easy-to-use event-related brain potential (ERP). As a severe disadvantage, ERP computation requires a large number of repetitions of items from the same stimulus-category, compromising both ERPs' reliability and their ecological validity in infant research. We here explore a way to investigate infant continuous EEG responses to an ongoing, engaging signal (i.e., "neural tracking") by using multivariate temporal response functions (mTRFs), an approach increasingly popular in adult EEG research. N = 52 infants watched a 5-min episode of an age-appropriate cartoon while the EEG signal was recorded. We estimated and validated forward encoding models of auditory-envelope and visual-motion features. We compared individual and group-based ('generic') models of the infant brain response to comparison data from N = 28 adults. The generic model yielded clearly defined response functions for both, the auditory and the motion regressor. Importantly, this response profile was present also on an individual level, albeit with lower precision of the estimate but above-chance predictive accuracy for the modelled individual brain responses. In sum, we demonstrate that mTRFs are a feasible way of analyzing continuous EEG responses in infants. We observe robust response estimates both across and within participants from only 5 min of recorded EEG signal. Our results open ways for incorporating more engaging and more ecologically valid stimulus materials when probing cognitive, perceptual, and affective processes in infants and young children.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Desenvolvimento Infantil/fisiologia , Eletroencefalografia/métodos , Percepção Visual/fisiologia , Feminino , Humanos , Lactente , Masculino , Modelos Teóricos , Fatores de Tempo
10.
J Neurosci ; 37(38): 9189-9196, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28821680

RESUMO

The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex.SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects.


Assuntos
Córtex Auditivo/fisiologia , Rede Nervosa/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica/métodos , Sinais (Psicologia) , Feminino , Humanos , Masculino , Adulto Jovem
11.
Neuroimage ; 172: 162-174, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29366698

RESUMO

Human experience often involves continuous sensory information that unfolds over time. This is true in particular for speech comprehension, where continuous acoustic signals are processed over seconds or even minutes. We show that brain responses to such continuous stimuli can be investigated in detail, for magnetoencephalography (MEG) data, by combining linear kernel estimation with minimum norm source localization. Previous research has shown that the requirement to average data over many trials can be overcome by modeling the brain response as a linear convolution of the stimulus and a kernel, or response function, and estimating a kernel that predicts the response from the stimulus. However, such analysis has been typically restricted to sensor space. Here we demonstrate that this analysis can also be performed in neural source space. We first computed distributed minimum norm current source estimates for continuous MEG recordings, and then computed response functions for the current estimate at each source element, using the boosting algorithm with cross-validation. Permutation tests can then assess the significance of individual predictor variables, as well as features of the corresponding spatio-temporal response functions. We demonstrate the viability of this technique by computing spatio-temporal response functions for speech stimuli, using predictor variables reflecting acoustic, lexical and semantic processing. Results indicate that processes related to comprehension of continuous speech can be differentiated anatomically as well as temporally: acoustic information engaged auditory cortex at short latencies, followed by responses over the central sulcus and inferior frontal gyrus, possibly related to somatosensory/motor cortex involvement in speech perception; lexical frequency was associated with a left-lateralized response in auditory cortex and subsequent bilateral frontal activity; and semantic composition was associated with bilateral temporal and frontal brain activity. We conclude that this technique can be used to study the neural processing of continuous stimuli in time and anatomical space with the millisecond temporal resolution of MEG. This suggests new avenues for analyzing neural processing of naturalistic stimuli, without the necessity of averaging over artificially short or truncated stimuli.


Assuntos
Encéfalo/fisiologia , Compreensão/fisiologia , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Percepção da Fala/fisiologia , Acústica , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Adulto Jovem
12.
J Neurosci ; 35(42): 14195-204, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490860

RESUMO

Congruent audiovisual speech enhances our ability to comprehend a speaker, even in noise-free conditions. When incongruent auditory and visual information is presented concurrently, it can hinder a listener's perception and even cause him or her to perceive information that was not presented in either modality. Efforts to investigate the neural basis of these effects have often focused on the special case of discrete audiovisual syllables that are spatially and temporally congruent, with less work done on the case of natural, continuous speech. Recent electrophysiological studies have demonstrated that cortical response measures to continuous auditory speech can be easily obtained using multivariate analysis methods. Here, we apply such methods to the case of audiovisual speech and, importantly, present a novel framework for indexing multisensory integration in the context of continuous speech. Specifically, we examine how the temporal and contextual congruency of ongoing audiovisual speech affects the cortical encoding of the speech envelope in humans using electroencephalography. We demonstrate that the cortical representation of the speech envelope is enhanced by the presentation of congruent audiovisual speech in noise-free conditions. Furthermore, we show that this is likely attributable to the contribution of neural generators that are not particularly active during unimodal stimulation and that it is most prominent at the temporal scale corresponding to syllabic rate (2-6 Hz). Finally, our data suggest that neural entrainment to the speech envelope is inhibited when the auditory and visual streams are incongruent both temporally and contextually. SIGNIFICANCE STATEMENT: Seeing a speaker's face as he or she talks can greatly help in understanding what the speaker is saying. This is because the speaker's facial movements relay information about what the speaker is saying, but also, importantly, when the speaker is saying it. Studying how the brain uses this timing relationship to combine information from continuous auditory and visual speech has traditionally been methodologically difficult. Here we introduce a new approach for doing this using relatively inexpensive and noninvasive scalp recordings. Specifically, we show that the brain's representation of auditory speech is enhanced when the accompanying visual speech signal shares the same timing. Furthermore, we show that this enhancement is most pronounced at a time scale that corresponds to mean syllable length.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Visuais/fisiologia , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Análise de Variância , Mapeamento Encefálico , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
13.
J Neurosci ; 35(18): 7256-63, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25948273

RESUMO

The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene.


Assuntos
Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Psicoacústica , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Fatores de Tempo , Adulto Jovem
14.
eNeuro ; 11(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39266328

RESUMO

Studies employing EEG to measure somatosensory responses have been typically optimized to compute event-related potentials in response to discrete events. However, tactile interactions involve continuous processing of nonstationary inputs that change in location, duration, and intensity. To fill this gap, this study aims to demonstrate the possibility of measuring the neural tracking of continuous and unpredictable tactile information. Twenty-seven young adults (females, 15) were continuously and passively stimulated with a random series of gentle brushes on single fingers of each hand, which were covered from view. Thus, tactile stimulations were unique for each participant and stimulated fingers. An encoding model measured the degree of synchronization between brain activity and continuous tactile input, generating a temporal response function (TRF). Brain topographies associated with the encoding of each finger stimulation showed a contralateral response at central sensors starting at 50 ms and peaking at ∼140 ms of lag, followed by a bilateral response at ∼240 ms. A series of analyses highlighted that reliable tactile TRF emerged after just 3 min of stimulation. Strikingly, topographical patterns of the TRF allowed discriminating digit lateralization across hands and digit representation within each hand. Our results demonstrated for the first time the possibility of using EEG to measure the neural tracking of a naturalistic, continuous, and unpredictable stimulation in the somatosensory domain. Crucially, this approach allows the study of brain activity following individualized, idiosyncratic tactile events to the fingers.


Assuntos
Eletroencefalografia , Estimulação Física , Percepção do Tato , Humanos , Masculino , Feminino , Adulto Jovem , Eletroencefalografia/métodos , Percepção do Tato/fisiologia , Adulto , Encéfalo/fisiologia , Dedos/fisiologia , Tato/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Mapeamento Encefálico , Lateralidade Funcional/fisiologia
15.
Sci Rep ; 14(1): 9133, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644370

RESUMO

Multimedia is extensively used for educational purposes. However, certain types of multimedia lack proper design, which could impose a cognitive load on the user. Therefore, it is essential to predict cognitive load and understand how it impairs brain functioning. Participants watched a version of educational multimedia that applied Mayer's principles, followed by a version that did not. Meanwhile, their electroencephalography (EEG) was recorded. Subsequently, they participated in a post-test and completed a self-reported cognitive load questionnaire. The audio envelope and word frequency were extracted from the multimedia, and the temporal response functions (TRFs) were obtained using a linear encoding model. We observed that the behavioral data are different between the two groups and the TRFs of the two multimedia versions were different. We saw changes in the amplitude and latencies of both early and late components. In addition, correlations were found between behavioral data and the amplitude and latencies of TRF components. Cognitive load decreased participants' attention to the multimedia, and semantic processing of words also occurred with a delay and smaller amplitude. Hence, encoding models provide insights into the temporal and spatial mapping of the cognitive load activity, which could help us detect and reduce cognitive load in potential environments such as educational multimedia or simulators for different purposes.


Assuntos
Encéfalo , Cognição , Eletroencefalografia , Multimídia , Humanos , Cognição/fisiologia , Masculino , Feminino , Encéfalo/fisiologia , Adulto Jovem , Adulto , Estimulação Acústica , Linguística , Atenção/fisiologia
16.
Trends Hear ; 28: 23312165241246596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738341

RESUMO

The auditory brainstem response (ABR) is a valuable clinical tool for objective hearing assessment, which is conventionally detected by averaging neural responses to thousands of short stimuli. Progressing beyond these unnatural stimuli, brainstem responses to continuous speech presented via earphones have been recently detected using linear temporal response functions (TRFs). Here, we extend earlier studies by measuring subcortical responses to continuous speech presented in the sound-field, and assess the amount of data needed to estimate brainstem TRFs. Electroencephalography (EEG) was recorded from 24 normal hearing participants while they listened to clicks and stories presented via earphones and loudspeakers. Subcortical TRFs were computed after accounting for non-linear processing in the auditory periphery by either stimulus rectification or an auditory nerve model. Our results demonstrated that subcortical responses to continuous speech could be reliably measured in the sound-field. TRFs estimated using auditory nerve models outperformed simple rectification, and 16 minutes of data was sufficient for the TRFs of all participants to show clear wave V peaks for both earphones and sound-field stimuli. Subcortical TRFs to continuous speech were highly consistent in both earphone and sound-field conditions, and with click ABRs. However, sound-field TRFs required slightly more data (16 minutes) to achieve clear wave V peaks compared to earphone TRFs (12 minutes), possibly due to effects of room acoustics. By investigating subcortical responses to sound-field speech stimuli, this study lays the groundwork for bringing objective hearing assessment closer to real-life conditions, which may lead to improved hearing evaluations and smart hearing technologies.


Assuntos
Estimulação Acústica , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico , Percepção da Fala , Humanos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Masculino , Feminino , Percepção da Fala/fisiologia , Estimulação Acústica/métodos , Adulto , Adulto Jovem , Limiar Auditivo/fisiologia , Fatores de Tempo , Nervo Coclear/fisiologia , Voluntários Saudáveis
17.
Neurobiol Aging ; 134: 165-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103477

RESUMO

Neural tracking of spoken speech is considered a potential clinical biomarker for speech-processing difficulties, but the reliability of neural speech tracking is unclear. Here, younger and older adults listened to stories in two sessions while electroencephalography was recorded to investigate the reliability and generalizability of neural speech tracking. Speech tracking amplitude was larger for older than younger adults, consistent with an age-related loss of inhibition. The reliability of neural speech tracking was moderate (ICC ∼0.5-0.75) and tended to be higher for older adults. However, reliability was lower for speech tracking than for neural responses to noise bursts (ICC >0.8), which we used as a benchmark for maximum reliability. Neural speech tracking generalized moderately across different stories (ICC ∼0.5-0.6), which appeared greatest for audiobook-like stories spoken by the same person. Hence, a variety of stories could possibly be used for clinical assessments. Overall, the current data are important for developing a biomarker of speech processing but suggest that further work is needed to increase the reliability to meet clinical standards.


Assuntos
Percepção da Fala , Fala , Humanos , Idoso , Fala/fisiologia , Envelhecimento/fisiologia , Percepção da Fala/fisiologia , Reprodutibilidade dos Testes , Eletroencefalografia , Biomarcadores
18.
Trends Hear ; 28: 23312165241227815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545698

RESUMO

An objective method for assessing speech audibility is essential to evaluate hearing aid benefit in children who are unable to participate in hearing tests. With consonant-vowel syllables, brainstem-dominant responses elicited at the voice fundamental frequency have proven successful for assessing audibility. This study aimed to harness the neural activity elicited by the slow envelope of the same repetitive consonant-vowel syllables to assess audibility. In adults and children with normal hearing and children with hearing loss wearing hearing aids, neural activity elicited by the stimulus /su∫i/ or /sa∫i/ presented at 55-75 dB SPL was analyzed using the temporal response function approach. No-stimulus runs or very low stimulus level (15 dB SPL) were used to simulate inaudible conditions in adults and children with normal hearing. Both groups of children demonstrated higher response amplitudes relative to adults. Detectability (sensitivity; true positive rate) ranged between 80.1 and 100%, and did not vary by group or stimulus level but varied by stimulus, with /sa∫i/ achieving 100% detectability at 65 dB SPL. The average minimum time needed to detect a response ranged between 3.7 and 6.4 min across stimuli and listener groups, with the shortest times recorded for stimulus /sa∫i/ and in children with hearing loss. Specificity was >94.9%. Responses to the slow envelope of non-meaningful consonant-vowel syllables can be used to ascertain audible vs. inaudible speech with sufficient accuracy within clinically feasible test times. Such responses can increase the clinical usefulness of existing objective approaches to evaluate hearing aid benefit.


Assuntos
Surdez , Auxiliares de Audição , Perda Auditiva Neurossensorial , Perda Auditiva , Percepção da Fala , Adulto , Criança , Humanos , Fala , Percepção da Fala/fisiologia , Perda Auditiva/diagnóstico , Perda Auditiva Neurossensorial/reabilitação
19.
Sci Rep ; 14(1): 19105, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154048

RESUMO

The multivariate temporal response function (mTRF) is an effective tool for investigating the neural encoding of acoustic and complex linguistic features in natural continuous speech. In this study, we investigated how neural representations of speech features derived from natural stimuli are related to early signs of cognitive decline in older adults, taking into account the effects of hearing. Participants without ( n = 25 ) and with ( n = 19 ) early signs of cognitive decline listened to an audiobook while their electroencephalography responses were recorded. Using the mTRF framework, we modeled the relationship between speech input and neural response via different acoustic, segmented and linguistic encoding models and examined the response functions in terms of encoding accuracy, signal power, peak amplitudes and latencies. Our results showed no significant effect of cognitive decline or hearing ability on the neural encoding of acoustic and linguistic speech features. However, we found a significant interaction between hearing ability and the word-level segmentation model, suggesting that hearing impairment specifically affects encoding accuracy for this model, while other features were not affected by hearing ability. These results suggest that while speech processing markers remain unaffected by cognitive decline and hearing loss per se, neural encoding of word-level segmented speech features in older adults is affected by hearing loss but not by cognitive decline. This study emphasises the effectiveness of mTRF analysis in studying the neural encoding of speech and argues for an extension of research to investigate its clinical impact on hearing loss and cognition.


Assuntos
Disfunção Cognitiva , Eletroencefalografia , Perda Auditiva , Percepção da Fala , Humanos , Masculino , Feminino , Idoso , Disfunção Cognitiva/fisiopatologia , Perda Auditiva/fisiopatologia , Percepção da Fala/fisiologia , Fala/fisiologia , Pessoa de Meia-Idade , Sinais (Psicologia) , Linguística , Estimulação Acústica , Idoso de 80 Anos ou mais
20.
Curr Biol ; 34(2): 444-450.e5, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38176416

RESUMO

The appreciation of music is a universal trait of humankind.1,2,3 Evidence supporting this notion includes the ubiquity of music across cultures4,5,6,7 and the natural predisposition toward music that humans display early in development.8,9,10 Are we musical animals because of species-specific predispositions? This question cannot be answered by relying on cross-cultural or developmental studies alone, as these cannot rule out enculturation.11 Instead, it calls for cross-species experiments testing whether homologous neural mechanisms underlying music perception are present in non-human primates. We present music to two rhesus monkeys, reared without musical exposure, while recording electroencephalography (EEG) and pupillometry. Monkeys exhibit higher engagement and neural encoding of expectations based on the previously seeded musical context when passively listening to real music as opposed to shuffled controls. We then compare human and monkey neural responses to the same stimuli and find a species-dependent contribution of two fundamental musical features-pitch and timing12-in generating expectations: while timing- and pitch-based expectations13 are similarly weighted in humans, monkeys rely on timing rather than pitch. Together, these results shed light on the phylogeny of music perception. They highlight monkeys' capacity for processing temporal structures beyond plain acoustic processing, and they identify a species-dependent contribution of time- and pitch-related features to the neural encoding of musical expectations.


Assuntos
Música , Animais , Percepção da Altura Sonora/fisiologia , Motivação , Eletroencefalografia/métodos , Primatas , Estimulação Acústica , Percepção Auditiva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA