Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(5): 976-987.e7, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979589

RESUMO

Aerobic glycolysis-the Warburg effect-converts glucose to lactate via the enzyme lactate dehydrogenase A (LDHA) and is a metabolic feature of effector T cells. Cells generate ATP through various mechanisms and Warburg metabolism is comparatively an energy-inefficient glucose catabolism pathway. Here, we examined the effect of ATP generated via aerobic glycolysis in antigen-driven T cell responses. Cd4CreLdhafl/fl mice were resistant to Th17-cell-mediated experimental autoimmune encephalomyelitis and exhibited defective T cell activation, migration, proliferation, and differentiation. LDHA deficiency crippled cellular redox balance and inhibited ATP production, diminishing PI3K-dependent activation of Akt kinase and thereby phosphorylation-mediated inhibition of Foxo1, a transcriptional repressor of T cell activation programs. Th17-cell-specific expression of an Akt-insensitive Foxo1 recapitulated the defects seen in Cd4CreLdhafl/fl mice. Induction of LDHA required PI3K signaling and LDHA deficiency impaired PI3K-catalyzed PIP3 generation. Thus, Warburg metabolism augments glycolytic ATP production, fueling a PI3K-centered positive feedback regulatory circuit that drives effector T cell responses.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/fisiologia , Células Th17/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Doença de Depósito de Glicogênio/metabolismo , Glicólise/fisiologia , L-Lactato Desidrogenase/deficiência , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Immunity ; 49(5): 886-898.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446383

RESUMO

Pathogenic Th17 (pTh17) cells drive inflammation and immune-pathology, but whether pTh17 cells are a Th17 cell subset whose generation is under specific molecular control remains unaddressed. We found that Ras p21 protein activator 3 (RASA3) was highly expressed by pTh17 cells relative to non-pTh17 cells and was required specifically for pTh17 generation in vitro and in vivo. Mice conditionally deficient for Rasa3 in T cells showed less pathology during experimental autoimmune encephalomyelitis. Rasa3-deficient T cells acquired a Th2 cell-biased program that dominantly trans-suppressed pTh17 cell generation via interleukin 4 production. The Th2 cell bias of Rasa3-deficient T cells was due to aberrantly elevated transcription factor IRF4 expression. RASA3 promoted proteasome-mediated IRF4 protein degradation by facilitating interaction of IRF4 with E3-ubiquitin ligase Cbl-b. Therefore, a RASA3-IRF4-Cbl-b pathway specifically directs pTh17 cell generation by balancing reciprocal Th17-Th2 cell programs. These findings indicate that a distinct molecular program directs pTh17 cell generation and reveals targets for treating pTh17 cell-related pathology and diseases.


Assuntos
Diferenciação Celular/genética , Proteínas Ativadoras de GTPase/genética , Células Th17/citologia , Células Th17/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Animais , Autoimunidade , Biomarcadores , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Imunofenotipagem , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Proteólise , RNA Mensageiro , Células Th17/imunologia , Células Th2/imunologia
3.
Proc Natl Acad Sci U S A ; 121(18): e2312111121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657041

RESUMO

Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.


Assuntos
Diferenciação Celular , Colite , Histona Desacetilases , Correpressor 1 de Receptor Nuclear , Células Th17 , Animais , Células Th17/citologia , Células Th17/metabolismo , Células Th17/imunologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos , Colite/genética , Colite/metabolismo , Colite/imunologia , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Interleucina-17/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Humanos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Interleucina-2/metabolismo
4.
Int Immunol ; 36(5): 241-256, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38153198

RESUMO

Multiple sclerosis (MS) is an incurable chronic autoimmune disease affecting the central nervous system (CNS). Although IL-17-producing helper T (Th17) cells are thought to be one of the exacerbating factors in MS, the underlying pathogenic mechanism is incompletely understood. TNF receptor-associated factor 6 (TRAF6) deficient T cells exhibited enhanced Th17 cell differentiation, however, the physiological relevance of TRAF6 in T cells remains unknown. Here, we induced experimental autoimmune encephalomyelitis (EAE) in T cell-specific TRAF6 deficient (TRAF6ΔT) mice to investigate the role of TRAF6 in T cells during the course of MS using an EAE model. Although Th17 cell differentiation was enhanced in TRAF6ΔT mice, mutant mice were resistant to EAE. In contrast, TRAF6 loss did not affect regulatory T-cell differentiation. Consistent with the severity of EAE, a small number of infiltrating T cells and a small area of demyelination were observed in the CNS of TRAF6ΔT mice. Moreover, myelin oligodendrocyte glycoprotein-induced IL-17 production in TRAF6-deficient T cells was significantly suppressed. We further confirmed lower levels of CD69 and granulocyte-macrophage colony-stimulating factor in Th17 cells of TRAF6ΔT mice than in wild-type mice. In contrast, the expression of IL-10 and cytotoxic T-lymphocyte-associated protein 4 in T cells was significantly elevated in the absence of TRAF6 because of enhanced T-cell receptor signaling. Collectively, TRAF6 signaling in T cells contributes to the pathogenesis of EAE by regulating the pathogenicity and autoantigen reactivity of Th17 cells.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Células Th17 , Fator 6 Associado a Receptor de TNF/metabolismo
5.
Immunity ; 45(1): 209-23, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27438772

RESUMO

CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment.


Assuntos
Sinalização do Cálcio , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fosfolipase C gama/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Receptor fas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fosfolipase C gama/genética , Domínios e Motivos de Interação entre Proteínas/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Transcriptoma , Migração Transendotelial e Transepitelial , Receptor fas/genética
6.
Mol Cell ; 65(6): 1068-1080.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28262505

RESUMO

The BET proteins are major transcriptional regulators and have emerged as new drug targets, but their functional distinction has remained elusive. In this study, we report that the BET family members Brd2 and Brd4 exert distinct genomic functions at genes whose transcription they co-regulate during mouse T helper 17 (Th17) cell differentiation. Brd2 is associated with the chromatin insulator CTCF and the cohesin complex to support cis-regulatory enhancer assembly for gene transcriptional activation. In this context, Brd2 binds the transcription factor Stat3 in an acetylation-sensitive manner and facilitates Stat3 recruitment to active enhancers occupied with transcription factors Irf4 and Batf. In parallel, Brd4 temporally controls RNA polymerase II (Pol II) processivity during transcription elongation through cyclin T1 and Cdk9 recruitment and Pol II Ser2 phosphorylation. Collectively, our study uncovers both separate and interdependent Brd2 and Brd4 functions in potentiating the genetic program required for Th17 cell development and adaptive immunity.


Assuntos
Imunidade Adaptativa , Diferenciação Celular , Cromatina/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Células Th17/enzimologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Acetilação , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Ciclina T/genética , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Nucleares/genética , Fenótipo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Células Th17/imunologia , Fatores de Transcrição/genética , Transfecção , Coesinas
7.
Proc Natl Acad Sci U S A ; 119(14): e2117112119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344430

RESUMO

SignificanceSTAT3 (signal transducer and activator of transcription 3) is a master transcription factor that organizes cellular responses to cytokines and growth factors and is implicated in inflammatory disorders. STAT3 is a well-recognized therapeutic target for human cancer and inflammatory disorders, but how its function is regulated in a cell type-specific manner has been a major outstanding question. We discovered that Stat3 imposes self-directed regulation through controlling transcription of its own regulator homeodomain-interacting protein kinase 2 (Hipk2) in a T helper 17 (Th17) cell-specific manner. Our validation of the functional importance of the Stat3-Hipk2 axis in Th17 cell development in the pathogenesis of T cell-induced colitis in mice suggests an approach to therapeutically treat inflammatory bowel diseases that currently lack a safe and effective therapy.


Assuntos
Colite , Fator de Transcrição STAT3 , Animais , Diferenciação Celular/genética , Colite/genética , Colite/metabolismo , Ativação Linfocitária , Camundongos , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Th17
8.
J Infect Dis ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290045

RESUMO

The objective was to determine if antigen-specific tissue resident memory T (TRM) cells persist in respiratory tissues of adults immunized as children with whole cell pertussis (wP) or acellular pertussis (aP) vaccines. Mononuclear cells from tonsil or nasal tissue cells were cultured with Bordetella pertussis antigens and TRM cells quantified by flow cytometry. Adults immunized with wP vaccines as children had significantly more IL-17A and IFN-y-producing TRM cells that respond to B. pertussis antigens in respiratory tissues when compared with aP-primed donors. Our findings demonstrate that wP vaccines induce CD4 TRM cells that can persist in respiratory tissues for decades.

9.
Am J Respir Cell Mol Biol ; 71(2): 169-181, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593442

RESUMO

Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with T helper (Th)17 responses. However, how UPRs participate in the deregulation of Th17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in Th17 cells relative to naive CD4+ T cells. Cytokine (e.g., IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse Th17 cells. Ern1 (encoding IRE1) deficiency decreases the expression of endoplasmic reticulum stress factors and impairs the differentiation and cytokine secretion of Th17 cells. Genetic ablation of Ern1 leads to alleviated Th17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances Th17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of Th17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in Th17-biased TH2-low asthma.


Assuntos
Asma , Endorribonucleases , Neutrófilos , Proteínas Serina-Treonina Quinases , Células Th17 , Animais , Células Th17/imunologia , Células Th17/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Endorribonucleases/metabolismo , Endorribonucleases/genética , Asma/imunologia , Asma/patologia , Asma/metabolismo , Resposta a Proteínas não Dobradas , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-23/metabolismo , Interleucina-23/imunologia , Estresse do Retículo Endoplasmático/imunologia , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Transdução de Sinais , Camundongos Knockout , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo
10.
Eur J Immunol ; 53(10): e2350394, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431194

RESUMO

Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.


Assuntos
Asma , Microbioma Gastrointestinal , Gravidez , Criança , Humanos , Feminino , Antibacterianos/efeitos adversos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Disbiose , Inflamação , Pulmão
11.
Genes Cells ; 28(4): 267-276, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641236

RESUMO

Although excessive immune responses by Th17 cells, a helper T cell subset, are implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanism by which its localization in an inflamed colon is regulated remains unclear. Chemokines and their receptors are involved in the pathogenesis of IBD, however, the relative significance of each receptor on Th17 cells remains unknown. We generated C-C motif chemokine receptor 2 (CCR2) knockout (KO) and CCR6 KO mice in the syngeneic background using the CRISPR/Cas9 system and found that the phenotypes of experimental colitis worsened in both mutant mice. Surprisingly, the phenotype of colitis in CCR2/CCR6-double knockout (CCR2/6 DKO) mice was opposite to that of the single-deficient mice, with significantly milder experimental colitis (p < .05). The same was true for the symptoms in CCR6 KO mice, but not in wild type mice treated with a CCR2 inhibitor, propagermanium. Colonic CCR2+ CCR6+ Th17 cells produced a potentially pathogenic cytokine GM-CSF whose levels in the gut were significantly reduced in CCR2/6 DKO mice (p < .05). These results suggest that GM-CSF-producing CCR2+ CCR6+ Th17 cells are pathogenic and are attracted to the inflamed colon by either CCR2 or CCR6 gradient, which subsequently exacerbates experimental colitis in mice.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Células Th17/metabolismo , Células Th17/patologia , Dextranos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Colite/induzido quimicamente , Colite/genética , Quimiocinas/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores CCR6/genética , Receptores CCR2/genética
12.
J Transl Med ; 22(1): 663, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010157

RESUMO

The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.


Assuntos
Tolerância Imunológica , Células-Tronco Mesenquimais , Esclerose Múltipla , Linfócitos T Reguladores , Células Th17 , Humanos , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Transplante de Células-Tronco Mesenquimais
13.
Scand J Immunol ; : e13401, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155774

RESUMO

This study aimed to explore the molecular mechanism of neuronal cell adhesion molecule (NrCAM) by regulating Th17 cell differentiation in the pathogenesis of Graves' disease (GD). Naïve CD4+ T cells were isolated from peripheral blood mononuclear cells of GD patients and healthy control (HC) subjects. During the differentiation of CD4+ T cells into Th17 cells, NrCAM level in GD group was improved. Interference with NrCAM in CD4+ T cells of GD patients decreased the percentage of Th17 cells. NrCAM overexpression in CD4+ T cells of HC subjects increased the percentage of Th17 cells and upregulated p-IκBα, p50, p65, c-Rel protein expressions, and NF-κB inhibitor BAY11-7082 partially reversed NrCAM effect. NrCAM overexpression promoted the degradation of IκBα, and overexpression of small ubiquitin-related modifier 1 (SUMO-1) inhibited IκBα degradation. NrCAM overexpression reduced IκBα binding to SUMO-1. During Th17 cell differentiation in HC group, NrCAM overexpression increased IL-21 levels and secretion, and IL-21 neutralizing antibody reversed this effect. IL-21 level was decreased after p65 interference in CD4+ T cells of HC subjects. p65 interacts with IL-21 promoter region. In conclusion, NrCAM binds to SUMO-1 and increases phosphorylation of IκBα, leading to activation of NF-κB pathway, which promotes Th17 cell differentiation.

14.
FASEB J ; 37(11): e23277, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37878342

RESUMO

Pathogenic Th17 cells are critical drivers of multiple autoimmune diseases, including uveitis and its animal model, experimental autoimmune uveitis (EAU). However, how innate immune signals modulate pathogenic Th17 responses remains largely unknown. Here, we showed that miR-338-3p endowed dendritic cells (DCs) with an increased ability to activate interphotoreceptor retinoid-binding protein (IRBP)1-20 -specific Th17 cells by promoting the production of IL-6, IL-1ß, and IL-23. In vivo administration of LV-miR-338-infected DCs promoted pathogenic Th17 responses and exacerbated EAU development. Mechanistically, dual-specificity phosphatase 16 (Dusp16) was a molecular target of miR-338-3p. miR-338-3p repressed Dusp16 and therefore strengthened the mitogen-activated protein kinase (MAPK) p38 signaling, resulting in increased production of Th17-polarizing cytokines and subsequent pathogenic Th17 responses. In addition, methyltransferase like 3 (Mettl3), a key m6A methyltransferase, mediated the upregulation of miR-338-3p in activated DCs. Together, our findings identify a vital role for Mettl3/miR-338-3p/Dusp16/p38 signaling in DCs-driven pathogenic Th17 responses and suggest a potential therapeutic avenue for uveitis and other Th17 cell-related autoimmune disorders.


Assuntos
Doenças Autoimunes , MicroRNAs , Uveíte , Animais , Células Th17 , Doenças Autoimunes/genética , Metiltransferases , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Uveíte/genética , Células Dendríticas , MicroRNAs/genética
15.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33911034

RESUMO

The a disintegrin and metalloproteinase (ADAM) family of proteinases alter the extracellular environment and are involved in the development of T cells and autoimmunity. The role of ADAM family members in Th17 cell differentiation is unknown. We identified ADAM9 to be specifically expressed and to promote Th17 differentiation. Mechanistically, we found that ADAM9 cleaved the latency-associated peptide to produce bioactive transforming growth factor ß1, which promoted SMAD2/3 phosphorylation and activation. A transcription factor inducible cAMP early repressor was found to bind directly to the ADAM9 promoter and to promote its transcription. Adam9-deficient mice displayed mitigated experimental autoimmune encephalomyelitis, and transfer of Adam9-deficient myelin oligodendrocyte globulin-specific T cells into Rag1-/- mice failed to induce disease. At the translational level, an increased abundance of ADAM9 levels was observed in CD4+ T cells from patients with systemic lupus erythematosus, and ADAM9 gene deletion in lupus primary CD4+ T cells clearly attenuated their ability to differentiate into Th17 cells. These findings revealed that ADAM9 as a proteinase provides Th17 cells with an ability to activate transforming growth factor ß1 and accelerates its differentiation, resulting in aberrant autoimmunity.


Assuntos
Proteínas ADAM/genética , Autoimunidade/genética , Proteínas de Homeodomínio/genética , Proteínas de Membrana/genética , Linfócitos T/imunologia , Fator de Crescimento Transformador beta1/genética , Adulto , Animais , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , AMP Cíclico/genética , Feminino , Humanos , Lúpus Eritematoso Sistêmico , Masculino , Camundongos , Pessoa de Meia-Idade , Bainha de Mielina/genética , Oligodendroglia/metabolismo , Fosforilação/genética , Proteína Smad2/genética , Proteína Smad3/genética , Linfócitos T/patologia , Células Th17/imunologia , Adulto Jovem
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 744-748, 2024 May 20.
Artigo em Zh | MEDLINE | ID: mdl-38948276

RESUMO

Objective: To investigate the roles of histone H3K27me3 methylation and its regulatory enzymes JMJD3 and EZH2 in the differentiation of Th17 cells in ankylosing spondylitis (AS), to unveil their potential involvement in the pathogenesis of AS, and to provide new strategies and targets for the clinical treatment of AS by analyzing the methylation state of H3K27me3 and its interactions with Th17-related factors. Methods: A total of 84 AS patients (42 active AS patiens and 42 patients in the stable phase of AS) were enrolled for the study, while 84 healthy volunteers were enrolled as the controls. Blood samples were collected. Peripheral blood mononuclear cells were isolated. ELISA assay was performed to examine Th17 cells and the relevant cytokines IL-21, IL-22, and IL-17. The mRNA expressions of RORc, JAK2, and STAT3 were analyzed by RT-PCR, the protein expressions of RORc, JAK2/STAT3 pathway protein, H3K27me3 and the relevant protease (EZH2 and JMJD3) were determined by Western blot. Correlation between H3K27me3, EZH2 and JMJD3 and the key signaling pathway molecules of Th cell differentiation was analyzed by Pearson correlation analysis. Results: The mRNA expressions of RORc, JAK2, and STAT3 were significantly higher in the active phase group than those in the stable phase group ( P<0.05). The relative grayscale values of H3K27me3 and EZH2 in the active phase group were lower than those of the stable phase group, which were lower than those of the control group, with the differences being statistically significant ( P<0.05). The relative grayscale values of JMJD3, RORc, JAK2, pJAK2, STAT3, and pSTAT3 proteins were significantly higher in the active phase group than those in the stable phase group, which were higher than those in the control group (all P<0.05). The proportion of Th17 and the expression level of inflammatory factors in the active period group were higher than those in the other two groups (P<0.05). H3K27me3 was negatively correlated with RORc, JAK2, STAT3, and IL-17, JMJD3 was positvely correlated with JAK2, STAT3, and IL-17, and EZH2 was negatively correlated with JAK2, STAT3, and IL-17 (all P<0.05). Conclusion: The low expression of H3K27me3 in AS is influenced by the gene loci JMJD3 and EZH2, which can regulate the differentiation of Th17 cells and thus play a role in the pathogenesis and progression of AS.


Assuntos
Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Histonas , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fator de Transcrição STAT3 , Espondilite Anquilosante , Células Th17 , Humanos , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Células Th17/metabolismo , Células Th17/citologia , Células Th17/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histonas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Metilação , Interleucinas/metabolismo , Interleucinas/genética , Interleucina 22 , Masculino , Feminino , Adulto
17.
Retrovirology ; 20(1): 7, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202790

RESUMO

BACKGROUND: With suppressive antiretroviral therapy, HIV infection is well-managed in most patients. However, eradication and cure are still beyond reach due to latent viral reservoirs in CD4 + T cells, particularly in lymphoid tissue environments including the gut associated lymphatic tissues. In HIV patients, there is extensive depletion of T helper cells, particularly T helper 17 cells from the intestinal mucosal area, and the gut is one of the largest viral reservoir sites. Endothelial cells line lymphatic and blood vessels and were found to promote HIV infection and latency in previous studies. In this study, we examined endothelial cells specific to the gut mucosal area-intestinal endothelial cells-for their impact on HIV infection and latency in T helper cells. RESULTS: We found that intestinal endothelial cells dramatically increased productive and latent HIV infection in resting CD4 + T helper cells. In activated CD4 + T cells, endothelial cells enabled the formation of latent infection in addition to the increase of productive infection. Endothelial-cell-mediated HIV infection was more prominent in memory T cells than naïve T cells, and it involved the cytokine IL-6 but did not involve the co-stimulatory molecule CD2. The CCR6 + T helper 17 subpopulation was particularly susceptible to such endothelial-cell-promoted infection. CONCLUSION: Endothelial cells, which are widely present in lymphoid tissues including the intestinal mucosal area and interact regularly with T cells physiologically, significantly increase HIV infection and latent reservoir formation in CD4 + T cells, particularly in CCR6 + T helper 17 cells. Our study highlighted the importance of endothelial cells and the lymphoid tissue environment in HIV pathology and persistence.


Assuntos
Infecções por HIV , Humanos , Células Endoteliais , Latência Viral , Replicação Viral , Linfócitos T CD4-Positivos , Receptores CCR6
18.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770344

RESUMO

T helper 17 (Th17)-cell differentiation triggered by interleukin-6 (IL-6) via STAT3 activation promotes inflammation in inflammatory bowel disease (IBD) patients. However, leukemia inhibitory factor (LIF), an IL-6 family cytokine, restricts inflammation by blocking Th17-cell differentiation via an unknown mechanism. Here, we report that microbiota dysregulation promotes LIF secretion by intestinal epithelial cells (IECs) in a mouse colitis model. LIF greatly activates STAT4 phosphorylation on multiple SPXX elements within the C-terminal transcription regulation domain. STAT4 and STAT3 act reciprocally on both canonical cis-inducible elements (SIEs) and noncanonical "AGG" elements at different loci. In lamina propria lymphocytes (LPLs), STAT4 activation by LIF blocks STAT3-dependent Il17a/Il17f promoter activation, whereas in IECs, LIF bypasses the extraordinarily low level of STAT4 to induce YAP gene expression via STAT3 activation. In addition, we found that the administration of LIF is sufficient to restore microbiome homeostasis. Thus, LIF effectively inhibits Th17 accumulation and promotes repair of damaged intestinal epithelium in inflamed colon, serves as a potential therapy for IBD.


Assuntos
Colite/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT4/fisiologia , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-17/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Células Th17/imunologia
19.
Immunogenetics ; 75(5): 433-443, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37540314

RESUMO

T-helper 17 (Th17) cells are a subset of CD4+ helper T cells that produce interleukin 17 (IL-17) and play a crucial role in the pathogenesis of inflammatory and autoimmune diseases. Few studies have been conducted to determine the role of Th17 cells in the tumorigenesis and development of pancreatic ductal adenocarcinoma (PDAC); however, its role is still unclear. In this study, the percentage of circulating Th17 cells and serum levels of IL-17A and IL-23 were analyzed using flow cytometry and ELISA, respectively, in 40 PDAC patients, 30 chronic pancreatitis (CP) patients and 30 healthy controls (HC). In addition, the mRNA expression levels of IL-17A, STAT3 and RORγt in tissue samples were quantified by qRT-PCR. The results showed that the percentage of circulating Th17 cells and the concentrations of serum IL-17A and IL-23 were significantly increased in PDAC patients as compared to CP and HC (P < 0.001). In addition, the higher level of IL-17A was significantly correlated with the poor overall survival of the PDAC patients. Furthermore, the frequencies of Th17 cells and IL-17A were significantly higher in stage III+IV PDAC patients versus stage I+II. A significant increase in IL-17A, STAT3 and RORγT mRNA was observed in patients with PDAC. Taken together, these findings suggest that the increased circulating Th17 cells and serum IL-17A may be involved in the development and metastasis of PDAC, and thus represent potential targets for the treatment of PDAC.


Assuntos
Adenocarcinoma , Interleucina-17 , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17/metabolismo , Interleucina-23/genética , Interleucina-23/metabolismo , Adenocarcinoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Pancreáticas
20.
Cancer Immunol Immunother ; 72(4): 1047-1058, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36074159

RESUMO

Anti-PD-1 antibody-mediated activation of type 17 T-cells undermines checkpoint inhibitor therapy in the LSL-KrasG12D murine lung cancer model. Herein, we establish that the Th17 subset is the primary driver of resistance to therapy demonstrate that the ontogeny of dysplasia-associated Th17 cells is driven by microbiota-conditioned macrophages; and identify the IL-17-COX-2-PGE2 axis as the mediator of CD8+ cytotoxic T-lymphocyte de-sensitization to checkpoint inhibitor therapy. Specifically, anti-PD-1 treatment of LSL-KrasG12D mice, in which CD4+ T-cells were deficient for RORc, resulted in a 60% increase in CTL cytotoxicity and a 2.5-fold reduction in tumor burden confirming the critical role of Th17 cells in resistance to therapy. Lung-specific depletion of microbiota reduced Th17 cell prevalence and tumor burden by 5- and 2.5-fold, respectively; establishing a link between microbiota and Th17 cell-driven tumorigenesis. Importantly, lung macrophages from microbiota sufficient, but not from microbiota-deficient, mice polarized naïve CD4+ T-cells to a Th17 phenotype, highlighting their role in bridging microbiota and Th17 immunity. Further, treatment with anti-PD-1 enhanced COX-2 and PGE2 levels, whereas neutralization of IL-17 diminished this effect. In contrast, inhibition of COX-2 rescued CTL activity and restored tumor suppression in anti-PD-1-treated mice, revealing the molecular basis of IL-17-mediated resistance to checkpoint blockade. Clinical implications of these findings are discussed.


Assuntos
Linfócitos T Citotóxicos , Células Th17 , Camundongos , Animais , Ciclo-Oxigenase 2/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , Interleucina-17 , Dinoprostona/farmacologia , Células Mieloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA