Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 2): 134181, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074711

RESUMO

A novel thermoreversible emulsion gel was successfully prepared with citrate agar (CA) as the sole emulsifier. Compared with native agar gel emulsion, CA gel emulsion (CAGE) formed a stable emulsion gel when the CA concentration was increased to 1.25 % (w/w). Results of time-temperature scanning experiments showed that the emulsion gel rapidly transformed into liquid emulsion when heated to 40-50 °C and then solidified into emulsion gel after cooling to the critical temperature of solidification. The emulsion gel had stable sol-gel transformation ability after seven cycles repeated heating-cooling treatment (HCT) at 85 °C and 4 °C. However, the stability of emulsion gels gradually decreased because of the large-droplet formation during heating, which affected the CA molecular-reconfiguration network structure in cooling. The conjunction analysis of microstructure and properties of the emulsion gel indicated that its stability depended primarily on the spatial repulsion and electrostatic repulsion provided by CA gel, and the main factor driving thermal reversibility was the temperature-responsive gelation performance of CA. The retention of quercetin was >90.23 % after seven HCTs because CAGEG enhanced the homogeneity and stability of the droplets.


Assuntos
Ágar , Emulsões , Géis , Temperatura , Ágar/química , Emulsões/química , Géis/química , Ácido Cítrico/química , Quercetina/química
2.
Heliyon ; 9(11): e22037, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053870

RESUMO

Liquid crystalline triphenylene derivatives, TPC1p-n (n = 6, 12, 14, 16) were prepared using p-alkoxycinnamate as the [2+2] photo-cyclization site. TPC1p-n (n = 12, 14, 16) showed Colr phase and gave crescent-shaped or helical fibers after UV-irradiated in liquid paraffin solutions at 90 and 110 °C in the Colr temperature range. The apparent photoreaction products were shown to be thermally reversible, i.e. they dissolved in liquid paraffin at high temperatures and reappeared on cooling, indicating that they were aggregates of oligomerized TPC1p-n. The reaction mechanism was discussed in terms of the structure of the liquid crystalline phase.

3.
Adv Mater ; 33(3): e2005263, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33283336

RESUMO

Owing to advantageous properties attributed to well-organized structures, multifunctional materials with reversible hierarchical and highly ordered arrangement in solid-state assembled structures have drawn tremendous interest. However, such materials rarely exist. Based on the reversible phase transition of phase-change materials (PCMs), phase-change nanocrystals (C18-UCNCs) are presented herein, which are capable of self-assembling into well-ordered hierarchical structures. C18-UCNCs have a core-shell structure consisting of a cellulose crystalline core that retains the basic structure and a soft shell containing octadecyl chains that allow phase transition. The distinct core-shell structure and phase transition of octadecyl chains allow C18-UCNCs to self-assemble into flaky nano/microstructures. These self-assembled C18-UCNCs exhibit efficient thermal transport and light-to-thermal energy conversion, and thus are promising for thermosensitive imaging. Specifically, flaky self-assembled nano/microstructures with manipulable surface morphology, surface wetting, and optical properties are thermoreversible and show thermally induced self-healing properties. By using phase-change nanocrystals as a novel group of PCMs, reversible self-assembled multifunctional materials can be engineered. This study proposes a promising approach for constructing self-assembled hierarchical structures by using phase-change nanocrystals and thereby significantly expands the application of PCMs.

4.
Polymers (Basel) ; 9(3)2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30970761

RESUMO

A proof of principle for the use of Diels⁻Alder (DA) chemistry as a thermoreversible cross-linking tool for ethylene⁻vinyl acetate (EVA) rubber is demonstrated using two differently prepared amorphous furan-functionalized EVA rubbers. The first is an EVFM terpolymer of ethylene, vinyl acetate, and furfuryl methacrylate. The second is an EVA-g-furan product, resulting from the reaction of maleated EVA with furfurylamine. Both furan-containing EVA rubbers have been cross-linked with bismaleimide (BM) via a DA coupling reaction to yield final products with similar cross-link density. The BM cross-linked EVFM terpolymer products display rubber properties similar to the ones of peroxide-cured EVA rubbers with similar cross-link densities, whereas the rubber properties of the BM cross-linked EVA-g-furan correspond to those of a rubber with a higher cross-link density. The preparation of the EVA-g-furan was up-scaled to a small internal mixer, which also allowed compounding with carbon black and mineral oil in the same step. Compounding with carbon black results in reinforcement of the EVA rubber (i.e., enhanced strength), and does not interfere with the reprocessing via the retro DA reaction.

5.
Int J Biol Macromol ; 95: 762-768, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27916570

RESUMO

The conventional vulcanization process applied to elastomers is irreversible and hinders therefore their useful recycling. We demonstrate here that natural rubber can be reversibly crosslinked via the Diels-Alder coupling of furan and maleimide moieties. The furan-modified natural rubber used in this strategy was also exploited to bind it to maleimide-modified nanocellulose, thus generating a covalently crosslinked composite of these two renewable polymers.


Assuntos
Produtos Biológicos/química , Celulose/química , Furanos/química , Nanoestruturas/química , Borracha/química , Óxidos N-Cíclicos/química , Elastômeros/química , Maleimidas/química , Oxirredução , Temperatura
6.
Int J Biol Macromol ; 75: 67-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25600988

RESUMO

Aminopropyl functionalized PEGylated mesoporous silica nanoparticles [H2N-Pr@PEGylated SBA-15] were synthesized and evaluated as a promising biocompatible additive to study the activity and thermal reversibility and stability of human carbonic anhydrase II (HCA II). For this purpose, the additive was prepared by covalent amino propyl functionalization of mesoporous silica nanoparticles (MSNs) bearing PEG moiety as linker. The MSNs was fully characterized using different techniques including transmission electron microscopy, N2 adsorption-desorption measurements, thermal gravimetric analysis, Fourier transform infrared spectroscopy and dynamic light scattering. The average particle size of [H2N-Pr@PEGylated SBA-15] was about 80 nm and showed high loading capacity for HCA II at pH 7.75 as a target protein. The efficiency of [H2N-Pr@PEGylated SBA-15] in improving reversibility of HCA II was investigated by various techniques including UV-vis, 1,8-Anilinonaphtalene Sulfonate (ANS) fluorescence, circular dichroism (CD), and differential scanning calorimetry. Our results showed that [H2N-Pr@PEGylated SBA-15] can increase the protein thermal reversibility and stability. Herein, kinetic studies were applied to confirm the ability of [H2N-Pr@PEGylated SBA-15] in increasing the activity of HCA II at high temperatures. Together our results present the [H2N-Pr@PEGylated SBA-15] as a water-dispersible and efficient additive for improving the activity, and thermal reversibility and stability of enzyme.


Assuntos
Anidrase Carbônica II/metabolismo , Nanopartículas/química , Temperatura , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Humanos , Nanopartículas/ultraestrutura , Porosidade , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
7.
Int J Biol Macromol ; 62: 358-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24060284

RESUMO

Protein glycation, the process by which carbohydrates attach to proteins upon covalent binding, can alter protein thermal reversibility and stability. Protein stability and reversibility have important role in protein behavior and function. Also they are benefit properties for drug produce and protein industrial applications. In this research the thermal reversibility and stability changes in human serum albumin (HSA) were studied upon incubation with glucose (GHSA) under physiological conditions for 21 and 35 days. The thermal reversibility and stability changes in GHSA were evaluated using circular dichroism (CD), UV-vis spectroscopy, fluorescence spectroscopy and differential scanning calorimetry (DSC). Our results showed that the glycation of HSA increased its thermal reversibility and stability, but decreased its conformational entropy compared to fresh native HSA and untreated HSA. Free lysine content assay (TNBSA test) indicated glucose can bind to protein covalently. These alterations were mainly attributed to the formation of crosslink between the lysine residues of HSA upon incubation with glucose.


Assuntos
Albumina Sérica/química , Albumina Sérica/metabolismo , Temperatura , Glucose/metabolismo , Glicosilação , Humanos , Lisina/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA