Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 124: 846-859, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182188

RESUMO

Emissions of carbonyl compounds from agricultural machines cannot be ignored. Carbonyl compounds can cause the formation of ozone (O3) and secondary organic aerosols, which can cause photochemical smog to form. In this study, 20 agricultural machines were tested using portable emission measurement system (PEMS) under real-world tillage processes. The exhaust gases were sampled using 2,4-dinitrophenylhydrazine cartridges, and 15 carbonyl compounds were analyzed by high-performance liquid chromatography. Carbonyl compound emission factors for agricultural machines were 51.14-3315.62 mg/(kg-fuel), and were 2.58 ± 2.05, 0.86 ± 1.07 and 0.29 ± 0.20 g/(kg-fuel) for China 0, China II and China III emission standards, respectively. Carbonyl compound emission factor for sowing seeds of China 0 agricultural machines was 3.32 ± 1.73 g/(kg-fuel). Formaldehyde, acetaldehyde and acrolein were the dominant carbonyl compounds emitted. Differences in emission standards and tillage processes impact ozone formation potential (OFP). The mean OFP was 20.15 ± 16.15 g O3/(kg-fuel) for the China 0 emission standard. The OFP values decreased by 66.9% from China 0 to China II, and 67.4% from China II to China III. The mean OFP for sowing seeds of China 0 agricultural machines was 25.92 ± 13.84 g O3/(kg-fuel). Between 1.75 and 24.22 times more ozone was found to be formed during sowing seeds than during other processes for China 0 and China II agricultural machines. Total carbonyl compound emissions from agricultural machines in China was 19.23 Gg in 2019. The results improve our understanding of carbonyl compound emissions from agricultural machines in China.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Acetaldeído , Acroleína/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Formaldeído/análise , Compostos Orgânicos/análise , Ozônio/análise , Smog/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
2.
Environ Pollut ; 314: 120280, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167170

RESUMO

Black carbon (BC), as one of the short-lived climate pollutants, is becoming more prominent contribution from non-road mobile source, especially for agricultural machinery (AM) in China. However, the understanding of BC emissions from AM is still not clear, and the BC emission factors (EFs) are also limited. In this study, we conducted real-world measurements on twenty AM to investigate the instantaneous BC emission characteristics and quantify BC EFs under the whole tillage processes. We find the instantaneous BC emissions and fuel consumptions are obvious differences and present good synchronization under different tillage processes. Multi-type (CO2-, fuel-, distance-, time-, and area-based) EFs of BC are developed, which are significantly affected by different tillage processes and emission standards of the used AM. While AM conducting rotary tillage, ploughing, harvest corn and harvest wheat on the same area of land, total BC emissions by using the China III emission standard AM will be reduced by 56%, 36%, 88%, and 87% than those by using China II emission standard AM, respectively. Furthermore, for corn and wheat production under the whole tillage processes, BC EFs are 16.90 (6.03-39.12) g/hm2 and 18.18 (5.91-38.69) g/hm2, CO2 EFs are 112.64 (72.07-195.98) g/hm2 and 103.72 (71.47-167.02) g/hm2, respectively. We estimate the BC and CO2 emissions from wheat and corn productions based on the average area-based EFs. The large fluctuation ranges of BC and CO2 emissions in different tillage processes and the whole processes can reflect that the use of AM in China is uneven. It also indicates that there is a large space for BC and CO2 emission reduction and optimization. Therefore, more attention should be paid to the control of BC and CO2 emissions from AM. We believe that the recommended multi-type EFs are applicable for the quantification of BC emissions from AM in China and other countries.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Fuligem/análise , Triticum , Zea mays , Carbono , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA