Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CNS Spectr ; 29(3): 166-175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487834

RESUMO

OBJECTIVE: The catechol-o-methyltransferase (COMT) inhibitor tolcapone constitutes a potentially useful probe of frontal cortical dopaminergic function. The aim of this systematic review was to examine what is known of effects of tolcapone on human cognition in randomized controlled studies. METHODS: The study protocol was preregistered on the Open Science Framework. A systematic review was conducted using PubMed to identify relevant randomized controlled trials examining the effects of tolcapone on human cognition. Identified articles were then screened against inclusion and exclusion criteria. RESULTS: Of the 22 full-text papers identified, 13 randomized control trials were found to fit the pre-specified criteria. The most consistent finding was that tolcapone modulated working memory; however, the direction of effect appeared to be contingent on the COMT polymorphism (more consistent evidence of improvement in Val-Val participants). There were insufficient nature and number of studies for meta-analysis. CONCLUSION: The cognitive improvements identified upon tolcapone administration, in some studies, are likely to be due to the level of dopamine in the prefrontal cortex being shifted closer to its optimum, per an inverted U model of prefrontal function. However, the results should be interpreted cautiously due to the small numbers of studies. Given the centrality of cortical dopamine to understanding human cognition, studies using tolcapone in larger samples and across a broader set of cognitive domains would be valuable. It would also be useful to explore the effects of different dosing regimens (different doses; and single versus repeated administration).


Assuntos
Inibidores de Catecol O-Metiltransferase , Catecol O-Metiltransferase , Cognição , Tolcapona , Humanos , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Cognição/efeitos dos fármacos , Catecol O-Metiltransferase/genética , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Adulto , Memória de Curto Prazo/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203650

RESUMO

Transthyretin (TTR) is an amyloidogenic homotetramer involved in the transport of thyroxine in blood and cerebrospinal fluid. To date, more than 130 TTR point mutations are known to destabilise the TTR tetramer, leading to its extracellular pathological aggregation accumulating in several organs, such as heart, peripheral and autonomic nerves, and leptomeninges. Tolcapone is an FDA-approved drug for Parkinson's disease that has been repurposed as a TTR stabiliser. We characterised 3-O-methyltolcapone and two newly synthesized lipophilic analogues, which are expected to be protected from the metabolic glucuronidation that is responsible for the lability of tolcapone in the organism. Immunoblotting assays indicated the high degree of TTR stabilisation, coupled with binding selectivity towards TTR in diluted plasma of 3-O-methyltolcapone and its lipophilic analogues. Furthermore, in vitro toxicity data showed their several-fold improved neuronal and hepatic safety compared to tolcapone. Calorimetric and structural data showed that both T4 binding sites of TTR are occupied by 3-O-methyltolcapone and its lipophilic analogs, consistent with an effective TTR tetramer stabilisation. Moreover, in vitro permeability studies showed that the three compounds can effectively cross the blood-brain barrier, which is a prerequisite for the inhibition of TTR amyloidogenesis in the cerebrospinal fluid. Our data demonstrate the relevance of 3-O-methyltolcapone and its lipophilic analogs as potent inhibitors of TTR amyloidogenesis.


Assuntos
Benzofenonas , Pré-Albumina , Tolcapona , Vias Autônomas
3.
Nervenarzt ; 93(10): 1035-1045, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35044481

RESUMO

Catechol O­methyltransferase (COMT) inhibitors have been established in the treatment of Parkinson's disease for more than 20 years. They are considered the medication of choice for treating motor fluctuations. The available COMT inhibitors, entacapone, opicapone and tolcapone, differ pharmacokinetically in terms of their half-lives with implications for the dose frequency, in their indication requirements and in their spectrum of side effects, including diarrhea and yellow discoloration of urine. Many patients with motor fluctuations are currently not treated with COMT inhibitors and are, therefore, unlikely to receive individually optimized drug treatment. This manuscript summarizes the results of a working group including several Parkinson's disease experts, in which the value of COMT inhibitors was critically discussed.


Assuntos
Inibidores de Catecol O-Metiltransferase , Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Catecol O-Metiltransferase/uso terapêutico , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Tolcapona/uso terapêutico
4.
Eur J Clin Pharmacol ; 77(6): 817-829, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33415500

RESUMO

PURPOSE: Tolcapone is an efficacious catechol-O-methyltransferase inhibitor for Parkinson's disease (PD). However, safety issues hampered its use in clinical practice. We aimed to provide evidence of safety and efficacy of tolcapone by a systematic literature review to support clinicians' choices in the use of an enlarging PD therapeutic armamentarium. METHODS: We searched PubMed for studies on PD patients treated with tolcapone, documenting the following outcomes: liver enzyme, adverse events (AEs), daily Off-time, levodopa daily dose, unified Parkinson's disease rating scale (UPDRS) part-III, quality of life (QoL), and non-motor symptoms. FAERS and EudraVigilance databases for suspected AEs were interrogated for potential additional cases of hepatotoxicity. RESULTS: Thirty-two studies were included, for a total of 4780 patients treated with tolcapone. Pertaining safety, 0.9% of patients showed liver enzyme elevation > 2. Over 23 years, we found 7 cases of severe liver injury related to tolcapone, 3 of which were fatal. All fatal cases did not follow the guidelines for liver function monitoring. FAERS and EudraVigilance database search yielded 61 reports of suspected liver AEs possibly related to tolcapone. Pertaining efficacy, the median reduction of hours/day spent in Off was 2.1 (range 1-3.2), of levodopa was 108.9 mg (1-251.5), of "On" UPDRS-III was 3.6 points (1.1-6.5). Most studies reported a significant improvement of QoL and non-motor symptoms. CONCLUSION: Literature data showed the absence of relevant safety concerns of tolcapone when strict adherence to hepatic function monitoring is respected. Given its high efficacy on motor fluctuations, tolcapone is probably an underutilized tool in the therapeutic PD armamentarium.


Assuntos
Antiparkinsonianos/uso terapêutico , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Tolcapona/uso terapêutico , Antiparkinsonianos/efeitos adversos , Inibidores de Catecol O-Metiltransferase/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Humanos , Levodopa/administração & dosagem , Testes de Função Hepática , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Índice de Gravidade de Doença , Tolcapona/efeitos adversos
5.
Arch Toxicol ; 95(4): 1335-1347, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33585966

RESUMO

Mitochondrial DNA (mtDNA) is highly polymorphic and encodes 13 proteins which are critical to the production of ATP via oxidative phosphorylation. As mtDNA is maternally inherited and undergoes negligible recombination, acquired mutations have subdivided the human population into several discrete haplogroups. Mitochondrial haplogroup has been found to significantly alter mitochondrial function and impact susceptibility to adverse drug reactions. Despite these findings, there are currently limited models to assess the effect of mtDNA variation upon susceptibility to adverse drug reactions. Platelets offer a potential personalised model of this variation, as their anucleate nature offers a source of mtDNA without interference from the nuclear genome. This study, therefore, aimed to determine the effect of mtDNA variation upon mitochondrial function and drug-induced mitochondrial dysfunction in a platelet model. The mtDNA haplogroup of 383 healthy volunteers was determined using next-generation mtDNA sequencing (Illumina MiSeq). Subsequently, 30 of these volunteers from mitochondrial haplogroups H, J, T and U were recalled to donate fresh, whole blood from which platelets were isolated. Platelet mitochondrial function was tested at basal state and upon treatment with compounds associated with both mitochondrial dysfunction and adverse drug reactions, flutamide, 2-hydroxyflutamide and tolcapone (10-250 µM) using extracellular flux analysis. This study has demonstrated that freshly-isolated platelets are a practical, primary cell model, which is amenable to the study of drug-induced mitochondrial dysfunction. Specifically, platelets from donors of haplogroup J have been found to have increased susceptibility to the inhibition of complex I-driven respiration by 2-hydroxyflutamide. At a time when individual susceptibility to adverse drug reactions is not fully understood, this study provides evidence that inter-individual variation in mitochondrial genotype could be a factor in determining sensitivity to mitochondrial toxicants associated with costly adverse drug reactions.


Assuntos
Plaquetas/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Flutamida/análogos & derivados , Tolcapona/toxicidade , Adolescente , Adulto , DNA Mitocondrial/genética , Feminino , Flutamida/toxicidade , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Xenobiotica ; 51(3): 268-278, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33289420

RESUMO

Catechol-O-methyltransferase (COMT) methylates both endogenous and exogenous catechol compounds to inactive and safe metabolites. We first optimised conditions for a convenient and sensitive continuous fluorescence-based 6-O-methylation assay of esculetin, which we used for investigating the COMT activity in human, mouse, rat, dog, rabbit, and sheep liver cytosols and microsomes and in ten different rat tissues. Furthermore, we compared the inhibition potencies and mechanisms of two clinically used COMT inhibitors, entacapone and tolcapone, in these species. In most tissues, the COMT activity was at least three times higher in cytosol than in microsomes. In the rat, the highest COMT activity was found in the liver, followed by kidney, ileum, thymus, spleen, lung, pancreas, heart, brain, and finally, skeletal muscle. Entacapone and tolcapone were characterised as highly potent mixed type tight-binding inhibitors. The competitive inhibition type dominated over the uncompetitive inhibition with entacapone, whereas uncompetitive inhibition dominated with tolcapone. Rats, dogs, pigs, and sheep are high COMT activity species, in contrast to humans, mice, and rabbits; COMT activity is highest in the liver. Both entacapone and tolcapone are potent COMT inhibitors, but their inhibition mechanisms differ.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Catecóis/farmacologia , Nitrilas/farmacologia , Escopoletina/metabolismo , Tolcapona/farmacologia , Umbeliferonas/metabolismo , Animais , Catálise , Cães , Humanos , Metilação , Camundongos , Coelhos , Ratos , Ovinos , Suínos
7.
Chem Biodivers ; 18(9): e2100204, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34252268

RESUMO

Parkinson's disease (PD) is one of the most targeted neurodegenerative diseases in clinical research. Awareness of research is due to its increasing number of affected people worldwide. The pathology of PD has been linked to several key proteins upregulation such as the catechol O-Methyltransferase (COMT). Hence, the synthesis of compounds possessing inhibitory capacity has been the frontline of research in recent years. Several compounds have been synthesized among which is the nitrocatechol. However, major limitations associated with the nitrocatechol scaffold include the inability to possess adequate CNS penetration properties and hepatic toxicity associated with the compounds. However, a series of bicyclic hydroxypyridones compounds were synthesized to evaluate their inhibitory potentials on COMT protein with compound 38 (c38) 2-[(2,4-dichlorophenyl)methyl]-7-hydroxy-1,2,3,4-tetrahydro-8H-pyrido[1,2-a]pyrazin-8-one shown to have a 40 fold increase level coverage in its IC50 over brain exposure when compared to the other synthesized compound. The molecular dynamics method was employed to understand the nature of interaction exhibited by c38. Molecular mechanics of c38 revealed a disruptive effect on the secondary structure of COMT protein. Per residue decomposition analysis revealed similar crucial residues involved in the favorable binding of c38 and tolcapone implicated its increased inhibitory capacity on COMT in preventing PD. Free binding energy (ΔGbind ) of c38 further revealed the inhibitory capacity towards COMT protein in comparison to the FDA approved tolcapone. Ligand mobility analysis of both compounds showed a timewise different mobility pattern across the simulation time frame at the active site pocket of the protein connoting the different inhibitory potency exhibited by c38 and tolcapone. Findings from this study revealed optimization of c38 could facilitate the discovery of new compounds with enhanced inhibitory properties towards COMT in treating PD.


Assuntos
Antiparkinsonianos/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Simulação de Dinâmica Molecular , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/química , Inibidores de Catecol O-Metiltransferase/química , Humanos , Estrutura Molecular , Doença de Parkinson/metabolismo , Termodinâmica
8.
Bioorg Chem ; 103: 104144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791384

RESUMO

Transthyretin (TTR) is an amyloidogenic homotetramer involved in the transport of thyroxine and retinol in blood and cerebrospinal fluid. TTR stabilizers, such as tolcapone, an FDA approved drug for Parkinson's disease, are able to interact with residues of the thyroxine-binding sites of TTR, both wild type and pathogenic mutant forms, thereby stabilizing its tetrameric native state and inhibiting amyloidogenesis. Herein, we report on the synthesis of 3-deoxytolcapone, a novel stabilizer of TTR. The high-resolution X-ray analyses of the interactions of 3-O-methyltolcapone and 3-deoxytolcapone with TTR were performed. In the two TTR-ligand complexes the tolcapone analogues establish mainly H-bond and hydrophobic interactions with residues of the thyroxine-binding site of the TTR tetramer. Both compounds are capable of high and selective stabilization of TTR in the presence of plasma proteins, despite their markedly different 'forward' and 'reverse' binding mode, respectively. In fact, the loss or the weakening of stabilizing interactions with protein residues of 3-deoxytolcapone in comparison with tolcapone and 3-O-methyltolcapone is compensated by new interactions established at the dimer-dimer interface. Our data, coupled with previously reported data on the pharmacokinetics properties in humans of tolcapone and 3-O-methyltolcapone, further support the relevance of the latter tolcapone analogue as TTR stabilizer.


Assuntos
Proteínas Amiloidogênicas/efeitos dos fármacos , Antiparkinsonianos/uso terapêutico , Tolcapona/análogos & derivados , Tolcapona/uso terapêutico , Antiparkinsonianos/farmacologia , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
9.
Int J Neuropsychopharmacol ; 20(12): 979-987, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020372

RESUMO

Background: Failure of procognitive drug trials in schizophrenia may reflect the clinical heterogeneity of schizophrenia, underscoring the need to identify biomarkers of treatment sensitivity. We used an experimental medicine design to test the procognitive effects of a putative procognitive agent, tolcapone, using an electroencephalogram-based cognitive control task in healthy subjects. Methods: Healthy men and women (n=27; ages 18-35 years), homozygous for either the Met/Met or Val/Val rs4680 genotype, received placebo and tolcapone 200 mg orally across 2 test days separated by 1 week in a double-blind, randomized, counterbalanced, within-subject design. On each test day, neurocognitive performance was assessed using the MATRICS Consensus Cognitive Battery and an electroencephalogram-based 5 Choice-Continuous Performance Test. Results: Tolcapone enhanced visual learning in low-baseline MATRICS Consensus Cognitive Battery performers (d=0.35) and had an opposite effect in high performers (d=0.5), and enhanced verbal fluency across all subjects (P=.03) but had no effect on overall MATRICS Consensus Cognitive Battery performance. Tolcapone reduced false alarm rate (d=0.8) and enhanced frontal P200 amplitude during correctly identified nontarget trials (d=0.6) in low-baseline 5 Choice-Continuous Performance Test performers and had opposite effects in high performers (d=0.5 and d=0.25, respectively). Tolcapone's effect on frontal P200 amplitude and false alarm rate was correlated (rs=-0.4, P=.05). All neurocognitive effects of tolcapone were independent of rs4680 genotype. Conclusion: Tolcapone enhanced neurocognition and engaged electroencephalogram measures relevant to cognitive processes in specific subgroups of healthy individuals. These findings support an experimental medicine model for identifying procognitive treatments and provide a strong basis for future biomarker-informed procognitive studies in schizophrenia patients.


Assuntos
Benzofenonas/farmacologia , Mapeamento Encefálico , Encéfalo/efeitos dos fármacos , Inibidores de Catecol O-Metiltransferase/farmacologia , Cognição/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Nitrofenóis/farmacologia , Adolescente , Adulto , Encéfalo/fisiologia , Catecol O-Metiltransferase/genética , Comportamento de Escolha/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Potenciais Evocados/genética , Feminino , Genótipo , Voluntários Saudáveis , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Tolcapona , Adulto Jovem
10.
Toxicol Appl Pharmacol ; 301: 42-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27089846

RESUMO

Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinson's disease, while tolcapone is only in limited use for Parkinson's patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7, UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (Ki) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68µM and 30.82µM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1.


Assuntos
Antiparkinsonianos/farmacologia , Benzofenonas/farmacologia , Catecóis/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Nitrilas/farmacologia , Nitrofenóis/farmacologia , Animais , Bilirrubina/metabolismo , Inibidores de Catecol O-Metiltransferase/farmacologia , Linhagem Celular , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Himecromona/farmacologia , Insetos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Tolcapona , Trifluoperazina/farmacologia
11.
J Neurovirol ; 21(5): 535-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26037113

RESUMO

This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND.


Assuntos
Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , HIV/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Nitrofenóis/farmacologia , Sinaptofisina/metabolismo , Linhagem Celular , Imunofluorescência , HIV/efeitos dos fármacos , Humanos , Neurônios/virologia , Reação em Cadeia da Polimerase em Tempo Real , Tolcapona , Transcriptoma
12.
Alcohol Clin Exp Res ; 38(9): 2468-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25257296

RESUMO

BACKGROUND: Dopamine (DA) has been shown to play a central role in regulating motivated behavior and encoding reward. Chronic drug abuse elicits a state of hypodopaminergia in the mesocorticolimbic (MCL) system in both humans and preclinical rodent models of addiction, including those modeling alcohol use disorders (AUD). METHODS: Working under the hypothesis that reductions in the bioavailability of DA play an integral role in the expression of the excessive drinking phenotype, the catechol-O-methyltransferase (COMT) inhibitor tolcapone was used as a means to amplify cortical DA concentration and drinking behaviors were then assessed. Sucrose and ethanol (EtOH) consumption were measured in P and Wistar rats in both a free choice drinking protocol and a novel cued access protocol. RESULTS: Tolcapone attenuated the consumption of EtOH, and to a lesser extent sucrose, in P rats in the cued access protocol, while no effect was observed in the free choice drinking protocol. Tolcapone also decreased EtOH consumption in high drinking Wistar rats. A follow-up experiment using the indirect DA agonist d-amphetamine showed no change in EtOH consumption. CONCLUSIONS: Collectively, these data suggest that COMT inhibitors may be capable of alleviating the extremely motivating or salient nature of stimuli associated with alcohol. The hypothesis is put forth that the relative specificity of tolcapone for cortical DA systems may mediate the suppression of the high seeking/drinking phenotype.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/genética , Benzofenonas/uso terapêutico , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Sinais (Psicologia) , Etanol/administração & dosagem , Nitrofenóis/uso terapêutico , Animais , Masculino , Ratos , Ratos Wistar , Tolcapona
13.
ACS Appl Mater Interfaces ; 16(17): 21522-21533, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647198

RESUMO

Tolcapone is an orally active catechol-O-methyltransferase (COMT) inhibitor used as adjuvant therapy in Parkinson's disease. However, it has a highly hepatotoxic profile, as recognized by the U.S. Food and Drug Administration. As a possible solution, nanoscience brought us several tools in the development of new functional nanomaterials with tunable physicochemical properties, which can be part of a solution to solve several drawbacks, including drug's short half-life and toxicity. This work aims to use PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a stable carrier with lower hydrodynamic size and polydispersity to encapsulate tolcapone in order to overcome its therapeutic drawbacks. Using the nanoprecipitation method, tolcapone-loaded nanoparticles with a DLC% of 5.7% were obtained (EE% of 47.0%) and subjected to a lyophilization optimization process to obtain a final shelf-stable formulation. Six different cryoprotectants in concentrations up to 10% (w/v) were tested. A formulation of PLGA nanoparticles with 3% hydroxypropyl-ß-cyclodextrin (HPßCD) as a cryoprotectant (PLGA-HP@Tolc), presenting sub-200 nm sizes and low polydispersity (PdI < 0.200) was selected. Cytotoxicity assays, namely, MTT and SRB, were used to study the metabolic activity and cell density of tolcapone and PLGA-HP@Tolc-treated cells. In both assays, a hepatocarcinoma cell line (HepG2) growing in glucose or glucose-free media (galactose-supplemented medium) was used. The results demonstrated that the treatment with the PLGA-HP@Tolc formulation led to a decrease in cytotoxicity in comparison to free tolcapone-treated cells in both media tested. Moreover, the elected formulation also counteracted ATP-depletion and excessive ROS production induced by tolcapone. The results suggest that HPßCD might have a dual function in the formulation: cryoprotectant and anticytotoxic agent, protecting cells from tolcapone-induced damage. Using an in vitro COMT inhibition assay, the PLGA-HP@Tolc formulation demonstrated to inhibit COMT as efficiently as free tolcapone. Overall, the results suggest that tolcapone-loaded PLGA NPs could be an interesting alternative to free tolcapone, demonstrating the same in vitro efficacy in inhibiting COMT but with a safer cytotoxic profile.


Assuntos
Nanopartículas , Polietilenoglicóis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tolcapona , Nanopartículas/química , Nanopartículas/toxicidade , Tolcapona/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Polietilenoglicóis/química , Células Hep G2 , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Inibidores de Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/farmacologia , Tamanho da Partícula , Crioprotetores/química , Crioprotetores/farmacologia , Sobrevivência Celular/efeitos dos fármacos
14.
Turk J Chem ; 48(1): 184-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544890

RESUMO

This study presents an electroanalytical approach to measure the catechol-O-methyltransferase (COMT) inhibitor tolcapone (TOL) using a boron-doped diamond (BDD) electrode. The application of cyclic voltammetry (CV) technique revealed that TOL exhibited a distinct, diffusion-controlled, irreversible anodic peak at a potential of approximately +0.71 V (vs. Ag/AgCl) in a 0.1 mol L-1 phosphate buffer solution (PBS) with a pH of 2.5. The oxidation of TOL is highly dependent on the pH and supporting electrolytes. Based on the data obtained from the pH investigation, a proposed mechanism for the electro-oxidation of TOL is suggested. Using the square wave voltammetry (SWV) technique, a satisfactory linear relationship was observed at approximately +0.66 V in a 0.1 mol L-1 PBS with a pH of 2.5. The presented method exhibited linearity within the concentration range between 1.0-50.0 µg mL-1 (3.7 × 10-6-1.8 × 10-4 mol L-1), with a limit of detection (LOD) of 0.29 µg mL-1 (1.1 × 10-6 mol L-1). The BDD electrode demonstrated good selectivity against inorganic ions and filler materials interference. Finally, the suitability of the developed approach was assessed by measuring TOL in tablet formulations, resulting in favorable recoveries ranging from 103.4% to 106.2%.

15.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 178-187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206282

RESUMO

BACKGROUND: Poor inhibitory control and enhanced subjective response to alcohol are interrelated risk factors for alcohol use disorder (AUD) that share underlying neural substrates, including dopamine signaling in the right prefrontal cortex, a potential target for pharmacological intervention. Cortical dopamine inactivation is primarily regulated by catechol-O-methyltransferase (COMT), an enzyme with large variation in activity as a function of the COMT rs4680 (val158met) single nucleotide polymorphism. In a previous randomized, placebo-controlled trial of the COMT inhibitor tolcapone (200 mg TID) in non-treatment-seeking participants with AUD, we found that tolcapone, relative to placebo, reduced alcohol self-administration only among rs4680 val-allele homozygotes, whose COMT activity is higher than in met-allele carriers. METHODS: We conducted secondary analyses of the effects of tolcapone and baseline COMT activity, as indexed by both rs4680 genotype and an enzymatic activity assay, on the subjective response to alcohol in a bar-laboratory paradigm among 60 participants in the previous trial. RESULTS: Tolcapone did not affect alcohol-induced stimulation or sedation more than placebo. However, baseline COMT activity moderated the effects of the drug on both outcomes, such that tolcapone-treated participants with higher baseline COMT activity had less stimulation (p = 0.008) and sedation (p = 0.053) than participants with lower baseline COMT activity and those treated with placebo. Additionally, alcohol-induced stimulation significantly mediated the interacting effects of baseline COMT activity and tolcapone on bar-laboratory self-administration. CONCLUSIONS: Tolcapone may reduce subjective response to alcohol more effectively among individuals with preexisting high COMT activity an effect that could account for the drug's reduction of alcohol consumption among these individuals.

16.
Neuropharmacology ; 242: 109770, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858886

RESUMO

Alcohol Use Disorder (AUD) is a significant public health issue in the United States. It affects millions of individuals and their families and contributes to substantial societal and economic burdens. Despite the availability of some pharmacological treatments, there is still a pressing need to develop more effective therapeutic strategies to address the diverse range of symptoms and challenges associated with AUD. Catechol-O-methyltransferase (COMT) inhibition recently emerged as a promising new approach to treating AUD due to its potential to improve cognitive effects commonly associated with AUD. Tolcapone, an FDA-approved COMT inhibitor, has shown some promise for treating AUD; however, its ability to decrease drinking in ethanol-dependent rats has not been well-established. In this study, we evaluated the effects of tolcapone on operant, oral ethanol self-administration in non-dependent and dependent rats, and in rats that self-administered oral saccharin. To induce dependence, rats underwent the chronic intermittent exposure to vapor model, and their drinking levels were assessed during acute withdrawal from ethanol. Our results demonstrated that tolcapone attenuated responding for ethanol in dependent rats only, without affecting self-administration in non-dependent rats or rats self-administering saccharin. Moreover, we found that tolcapone was differentially effective in different estrous phases in female rats. These findings suggest that COMT inhibition, specifically using tolcapone, may be a valuable pharmacotherapy for treating AUD, particularly in individuals who are physically dependent on alcohol. Further research is needed to elucidate the precise mechanisms underlying the observed effects and to assess the potential of COMT inhibitors in a broader population of individuals with AUD.


Assuntos
Alcoolismo , Catecol O-Metiltransferase , Humanos , Ratos , Feminino , Animais , Tolcapona , Alcoolismo/tratamento farmacológico , Etanol , Sacarina , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Nitrofenóis/farmacologia , Nitrofenóis/uso terapêutico , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
17.
J Pharm Biomed Anal ; 241: 115971, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266454

RESUMO

Lipids play key roles in the body, influencing cellular regulation, function, and signalling. Tolcapone, a potent catechol-O-methyltransferase (COMT) inhibitor described to enhance cognitive performance in healthy subjects, was previously shown to impact fatty acid ß-oxidation and oxidative phosphorylation. However, its impact on the brain lipidome remains unexplored. Hence, this study aimed to assess how tolcapone affects the lipidome of the rat pre-frontal cortex (PFC), a region of the brain highly relevant to tolcapone therapeutic effect, while evaluating its influence on operant behaviour. Tolcapone at 20 mg/kg was chronically administered to Wistar rats during a behavioural task and an untargeted liquid chromatography high-resolution mass spectrometry (LC-HR/MS) approach was employed to profile lipid species. The untargeted analysis identified 7227 features, of which only 33% underwent statistical analysis following data pre-processing. The results revealed an improved cognitive performance and a lipidome remodelling promoted by tolcapone. The lipidomic analysis showed 32 differentially expressed lipid species in tolcapone-treated animals (FC ≥ 1.2, p-value ≤ 0.1), and among these several triacylglycerols, cardiolipins and N-acylethanolamine (NAE 16:2) were found upregulated whereas fatty acids, hexosylceramides, and several phospholipids including phosphatidylcholines and phosphatidylethanolamines were downregulated. These preliminary findings shed light on tolcapone impact on lipid pathways within the brain. Although tolcapone improved cognitive performance and literature suggests the significance of lipids in cognition, this study did not conclusively establish that lipids directly drove or contributed to this outcome. Nevertheless, it underscores the importance of lipid modulation and encourages further exploration of tolcapone-associated mechanisms in the central nervous system (CNS).


Assuntos
Catecol O-Metiltransferase , Lipidômica , Humanos , Ratos , Animais , Tolcapona/metabolismo , Tolcapona/farmacologia , Benzofenonas , Nitrofenóis , Inibidores Enzimáticos/farmacologia , Ratos Wistar , Dopamina/metabolismo , Inibidores de Catecol O-Metiltransferase/farmacologia , Encéfalo/metabolismo , Lipídeos
18.
Neurol Ther ; 13(4): 1039-1054, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38809484

RESUMO

In the 1980s, Orion Pharma, then a mid-ranking Nordic area pharmaceutical company, established a drug development programme on the inhibition of catechol O-methyltransferase (COMT). This enzyme, which plays an important role in the inactivation of catecholamine neurotransmitters and drugs with a catechol structure, thus came under consideration as a target in the innovative translational and clinical programme we describe in this historical review. The starting point was the conjecture that a peripherally acting COMT inhibitor might improve entry of levodopa into the brain. This had potentially significant implications for the medical treatment of Parkinson's disease (PD). The rationale was that more efficient delivery of levodopa to the brain might allow the high therapeutic doses of levodopa to be reduced and the dose interval to be extended. Elucidation of structure-activity relations paved the way for the discovery and development of entacapone, a 5-nitrocatechol that was a potent and highly specific inhibitor of COMT. Experience in phase III clinical trials established that entacapone, used as an adjunct to regular or controlled-release levodopa preparations (also including a peripherally acting dopa-decarboxylase inhibitor), increased ON-time and reduced OFF-time and improved clinical condition in patients with PD experiencing wearing-off, often with a reduced daily levodopa dose. Several of these studies also identified that entacapone improved patients' quality of life and was cost-effective. Subsequently, entacapone has been amalgamated into a triple-combination preparation (Stalevo®) with levodopa and carbidopa to create a flexible and convenient drug therapy for patients with PD who have end-of-dose motor fluctuations not stabilised on levodopa/dopa-decarboxylase inhibitor treatment. This review offers a historical perspective on a successful programme of drug development by researchers who played central roles in the progress from exploratory hypothesis to registered pharmaceutical product.

19.
Nephrol Dial Transplant ; 28(8): 2045-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23543593

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human inherited diseases. Modifier genes seem to modulate the disease progression and might therefore be promising drug targets. Although a number of modifier loci have been already identified, no modifier gene has been proven to be a real modifier yet. METHODS: Gene expression profiling of two substrains of the Han:SPRD rat, namely PKD/Mhm and PKD/US, both harboring the same mutation, was conducted in 36-day-old animals. Catechol-O-methyltransferase (Comt) was identified as a potential modifier gene. A 3-month treatment with tolcapone, a selective inhibitor of Comt, was carried out in PKD/Mhm and PKD/US (cy/+) animals. RESULTS: Comt is localized within a known modifier locus of PKD (MOP2). The enzyme encoding gene was found upregulated in the more severely affected PKD/Mhm substrain and was hence presumed to be a putative modifier gene of PKD. The treatment with tolcapone markedly attenuated the loss of renal function, inhibited renal enlargement, shifted the size distribution of renal cysts and retarded cell proliferation, apoptosis, inflammation and fibrosis development in affected (cy/+) male and female PKD/Mhm and PKD/US rats. CONCLUSIONS: Comt has been confirmed to be the first reported modifier gene for PKD and tolcapone offers a promising drug for treating PKD.


Assuntos
Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Nitrofenóis/farmacologia , Doenças Renais Policísticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Doenças Renais Policísticas/patologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolcapona
20.
Protein Sci ; 32(4): e4610, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851846

RESUMO

Transthyretin (TTR)-related amyloidosis (ATTR) is a syndrome of diseases characterized by the extracellular deposition of fibrillar materials containing TTR variants. Ala97Ser (A97S) is the major mutation reported in Taiwanese ATTR patients. Here, we combine atomic resolution structural information together with the biochemical data to demonstrate that substitution of polar Ser for a small hydrophobic side chain of Ala at residue 97 of TTR largely influences the local packing density of the FG-loop, thus leading to the conformational instability of native tetramer, the increased monomeric species, and thus the enhanced amyloidogenicity of apo-A97S. Based on calorimetric studies, the tetramer destabilization of A97S can be substantially altered by interacting with native stabilizers via similarly energetic patterns compared to that of wild-type (WT) TTR; however, stabilizer binding partially rearranges the networks of hydrogen bonding in TTR variants while FG-loops of tetrameric A97S still remain relatively flexible. Moreover, TTR in complexed with holo-retinol binding protein 4 is slightly influenced by the structural and dynamic changes of FG-loop caused by A97S substitution with an approximately five-fold difference in binding affinity. Collectively, our findings suggest that the amyloidogenic A97S mutation destabilizes TTR by increasing the flexibility of the FG-loop in the monomer, thus modulating the rate of amyloid fibrillization.


Assuntos
Amiloide , Pré-Albumina , Humanos , Amiloide/química , Proteínas Amiloidogênicas/genética , Calorimetria , Mutação , Pré-Albumina/genética , Pré-Albumina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA