Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350949, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778498

RESUMO

Type 1 diabetes (T1D) is characterized by T-cell responses to islet antigens. Investigations in humans and the nonobese diabetic (NOD) mouse model of T1D have revealed that T-cell reactivity to insulin plays a central role in the autoimmune response. As there is no convenient NOD-based model to study human insulin (hIns) or its T-cell epitopes in the context of spontaneous T1D, we developed a NOD mouse strain transgenically expressing hIns in islets under the control of the human regulatory region. Female NOD.hIns mice developed T1D at approximately the same rate and overall incidence as NOD mice. Islet-infiltrating T cells from NOD.hIns mice recognized hIns peptides; both CD8 and CD4 T-cell epitopes were identified. We also demonstrate that islet-infiltrating T cells from HLA-transgenic NOD.hIns mice can be used to identify potentially patient-relevant hIns T-cell epitopes. Besides serving as an antigen, hIns was expressed in the thymus of NOD.hIns mice and could serve as a protector against T1D under certain circumstances, as previously suggested by genetic studies in humans. NOD.hIns mice and related strains facilitate human-relevant epitope discovery efforts and the investigation of fundamental questions that cannot be readily addressed in humans.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38349403

RESUMO

Huntington's disease (HD) is an autosomal-dominant progressive neurodegenerative disease that manifests with a triad of symptoms including motor dysfunctions, cognitive deficits, and prominent neuropsychiatric symptoms, the most common of which is depression, with a prevalence between 30 and 70%. Depressive symptoms occur in all stages of HD, beginning in presymptomatic HD gene carriers, and are strongly associated with suicidal ideation and suicidality, but their relationship with other clinical dimensions in HD is controversial and the underlying pathophysiology is poorly understood. Analysis of the available literature until November 2023 concerned the prevalence, clinical manifestations, neuroimaging, transgenic models, and treatment options of HD depression. While it was believed that depression in HD is due to psychosomatic factors in view of the fatal disease, studies in transgenic models of HD demonstrated molecular changes including neurotrophic and serotonergic dysregulation and disorders of the hypothalamic-pituitary-adrenal axis inducing depression-like changes. While relevant neuropathological data are missing, recent neuroimaging studies revealed correlations between depressive symptoms and dysfunctional connectivities in the default mode network, basal ganglia and prefrontal cortex, and changes in limbic and paralimbic structures related to the basic neurodegenerative process. The impact of response to antidepressants in HD patients is controversial; selective serotonin reuptake inhibitors are superior to serotonin-norepinephrine reuptake inhibitors, while electroconvulsive therapy may be effective for pharmacotherapy resistant cases. Since compared to major depressive disorder and depression in other neurodegenerative diseases, our knowledge of the molecular basis in HD depression is limited, further studies to elucidate the heterogeneous pathogenesis in this fatal disorder are warranted.

3.
Eur J Immunol ; 52(4): 566-581, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092032

RESUMO

T-bet is the lineage-specifying transcription factor for CD4+ TH 1 cells. T-bet has also been found in other CD4+ T cell subsets, including TH 17 cells and Treg, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell differentiation and function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells that have naïve cell surface markers and transcriptional profile and that this novel cell population is phenotypically and functionally distinct from previously described populations of naïve and memory CD4+ T cells. Naïve-like T-bet-experienced cells are polarized to the TH 1 lineage, predisposed to produce IFN-γ upon cell activation, and resist repolarization to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can polarize T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T-helper response.


Assuntos
Proteínas com Domínio T , Células Th1 , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Células Th2
4.
Kidney Int ; 101(4): 720-732, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090878

RESUMO

To guide the development of therapeutic interventions for acute kidney injury, elucidating the deleterious pathways of this global health problem is highly warranted. Emerging evidence has indicated a pivotal role of endothelial dysfunction in the etiology of this disease. We found that the class III semaphorin SEMA3C was ectopically upregulated with full length protein excreted into the blood and truncated protein secreted into the urine upon kidney injury and hypothesized a role for SEAM3C in acute kidney injury. Sema3c was genetically abrogated during acute kidney injury and subsequent kidney morphological and functional defects in two well-characterized models of acute kidney injury; warm ischemia/reperfusion and folic acid injection were analyzed. Employing a beta actin-dependent, inducible knockout of Sema3c, we demonstrate that in acute kidney injury SEMA3C promotes interstitial edema, leucocyte infiltration and tubular injury. Additionally, intravital microscopy combined with Evans Blue dye extravasation and primary culture of magnetically sorted peritubular endothelial cells identified a novel role for SEMA3C in promoting vascular permeability. Thus, our study points to microvascular permeability as an important driver of injury in acute kidney injury, and to SEMA3C as a novel permeability factor and potential target for therapeutic intervention.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Semaforinas , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Animais , Permeabilidade Capilar , Células Endoteliais/metabolismo , Feminino , Humanos , Rim/metabolismo , Masculino , Camundongos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Semaforinas/genética , Semaforinas/metabolismo
5.
J Vasc Res ; 59(4): 221-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35760040

RESUMO

Animal models have significantly advanced our understanding of the mechanisms of atherosclerosis formation and the evaluation of therapeutic options. The current focus of research is on preventive strategies and includes pharmacologic and biologic interventions directed primarily against smooth-muscle cell proliferation, endovascular devices for recanalization and/or drug delivery, and an integrated approach using both devices and pharmacobiologic agents. The experience over many decades with animal models in vascular research has established that a single, ideal, naturally available model for atherosclerosis does not exist. The spectrum ranges from large animals such as pigs to small animal experiments with genetically modified rodents such as the ApoE-/- mouse with correspondingly differently pronounced changes in their lipid and lipoprotein levels. The development of transgenic variants of currently available models, e.g., an ApoE-deficient rabbit line, has widened our options. Nevertheless, an appreciation of the individual features of natural or stimulated disease in each species is of importance for the proper design and execution of relevant experiments.


Assuntos
Aterosclerose , Procedimentos Cirúrgicos Vasculares , Animais , Aterosclerose/cirurgia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout para ApoE , Coelhos , Suínos
6.
J Mol Cell Cardiol ; 156: 20-32, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753119

RESUMO

We have previously demonstrated that the transcription co-factor yes-associated protein 1 (YAP1) promotes vascular smooth muscle cell (VSMC) de-differentiation. Yet, the role and underlying mechanisms of YAP1 in neointima formation in vivo remain unclear. The goal of this study was to investigate the role of VSMC-expressed YAP1 in vascular injury-induced VSMC proliferation and delineate the mechanisms underlying its action. Experiments employing gain- or loss-of-function of YAP1 demonstrated that YAP1 promotes human VSMC proliferation. Mechanistically, we identified platelet-derived growth factor receptor beta (PDGFRB) as a novel YAP1 target gene that confers the YAP1-dependent hyper-proliferative effects in VSMCs. Furthermore, we identified TEA domain transcription factor 1 (TEAD1) as a key transcription factor that mediates YAP1-dependent PDGFRß expression. ChIP assays demonstrated that TEAD1 is enriched at a PDGFRB gene enhancer. Luciferase reporter assays further demonstrated that YAP1 and TEAD1 co-operatively activate the PDGFRB enhancer. Consistent with these observations, we found that YAP1 expression is upregulated after arterial injury and correlates with PDGFRß expression and VSMC proliferation in vivo. Using a novel inducible SM-specific Yap1 knockout mouse model, we found that the specific deletion of Yap1 in adult VSMCs is sufficient to attenuate arterial injury-induced neointima formation, largely due to inhibited PDGFRß expression and VSMC proliferation. Our study unravels a novel mechanism by which YAP1/TEAD1 promote VSMC proliferation via transcriptional induction of PDGFRß, thereby enhancing PDGF-BB downstream signaling and promoting neointima formation.


Assuntos
Regulação da Expressão Gênica , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Transcrição de Domínio TEA/genética , Proteínas de Sinalização YAP/genética , Animais , Becaplermina/metabolismo , Proliferação de Células , Elementos Facilitadores Genéticos , Feminino , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Fatores de Transcrição de Domínio TEA/metabolismo , Ativação Transcricional , Proteínas de Sinalização YAP/metabolismo
7.
Neurobiol Dis ; 127: 193-209, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30818064

RESUMO

Neuroinflammatory activation of glia is considered a pathological hallmark of Parkinson's disease (PD) and is seen in both human PD patients and in animal models of PD; however, the relative contributions of these cell types, especially astrocytes, to the progression of disease is not fully understood. The transcription factor, nuclear factor kappa B (NFκB), is an important regulator of inflammatory gene expression in glia and is activated by multiple cellular stress signals through the kinase complex, IKK2. We sought to determine the role of NFκB in modulating inflammatory activation of astrocytes in a model of PD by generating a conditional knockout mouse (hGfapcre/Ikbk2F/F) in which IKK2 is specifically deleted in astrocytes. Measurements of IKK2 revealed a 70% deletion rate of IKK2 within astrocytes, as compared to littermate controls (Ikbk2F/F). Use of this mouse in a subacute, progressive model of PD through exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) revealed significant protection in exposed mice to direct and progressive loss of dopaminergic neurons in the substantia nigra (SN). hGfapcre/Ikbk2F/F mice were also protected against MPTPp-induced loss in motor activity, loss of striatal proteins, and genomic alterations in nigral NFκB gene expression, but were not protected from loss of striatal catecholamines. Neuroprotection in hGfapcre/Ikbk2F/F mice was associated with inhibition of MPTPp-induced astrocytic expression of inflammatory genes and protection against nitrosative stress and apoptosis in neurons. These data indicate that deletion of IKK2 within astrocytes is neuroprotective in the MPTPp model of PD and suggests that reactive astrocytes directly contribute the potentiation of dopaminergic pathology.


Assuntos
Astrócitos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Quinase I-kappa B/metabolismo , Intoxicação por MPTP/metabolismo , NF-kappa B/metabolismo , Animais , Morte Celular/fisiologia , Neurônios Dopaminérgicos/patologia , Quinase I-kappa B/genética , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , Probenecid , Substância Negra/metabolismo , Substância Negra/patologia
8.
Cell Physiol Biochem ; 46(1): 9-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566363

RESUMO

BACKGROUND/AIMS: Increased endoplasmic reticulum (ER) stress contributes to development of cardiorenal syndrome (CRS), and Silent Information Regulator 1 (SIRT1), a class III histone deacetylase, may have protective effects on heart and renal disease, by reducing ER stress. We aimed to determine if SIRT1 alleviates CRS through ER stress reduction. METHODS: Wild type mice (n=37), mice with cardiac-specific SIRT1 knockout (n=29), or overexpression (n=29), and corresponding controls, were randomized into four groups: sham MI (myocardial infarction) +sham STNx (subtotal nephrectomy); MI+sham STNx; sham MI+STNx; and MI+STNx. To establish the CRS model, subtotal nephrectomy (5/6 nephrectomy, SNTx) and myocardial infarction (MI) (induced by ligation of the left anterior descending (LAD) coronary artery) were performed successively to establish CRS model. At week 8, the mice were sacrificed after sequential echocardiographic and hemodynamic studies, and then pathology and Western-blot analysis were performed. RESULTS: Neither MI nor STNx alone significantly influenced the other healthy organ. However, in MI groups, STNx led to more severe cardiac structural and functional deterioration, with increased remodeling, increased BNP levels, and decreased EF, Max +dp/dt, and Max -dp/dt values than in sham MI +STNx groups. Conversely, in STNx groups, MI led to renal structural and functional deterioration, with more severe morphologic changes, augmented desmin and decreased nephrin expression, and increased BUN, SCr and UCAR levels. In MI+STNx groups, SIRT1 knockout led to more severe cardiac structural and functional deterioration, with higher Masson-staining score and BNP levels, and lower EF, FS, Max +dp/dt, and Max -dp/dt values; while SIRT1 overexpression had the opposite attenuating effects. In kidney, SIRT1 knockout resulted in greater structural and functional deterioration, as evidenced by more severe morphologic changes, higher levels of UACR, BUN and SCr, and increased desmin and TGF-ß expression, while SIRT1 overexpression resulted in less severe morphologic changes and increased nephrin expression without significant influence on BUN or SCr levels. The SIRT1 knockout but not overexpression resulted in increased myocardial expression of CHOP and GRP78. Cardiac-specific SIRT1 knockout or overexpression resulted in increased or decreased renal expression of CHOP, Bax, and p53 respectively. CONCLUSIONS: Myocardial SIRT1 activation appears protective to both heart and kidney in CRS models, probably through modulation of ER stress.


Assuntos
Síndrome Cardiorrenal/patologia , Estresse do Retículo Endoplasmático/fisiologia , Coração/fisiopatologia , Rim/patologia , Sirtuína 1/metabolismo , Animais , Síndrome Cardiorrenal/etiologia , Síndrome Cardiorrenal/metabolismo , Creatinina/sangue , Desmina/metabolismo , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Rim/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miocárdio/patologia , Nefrectomia , Sirtuína 1/deficiência , Sirtuína 1/genética , Fator de Transcrição CHOP/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Eur J Immunol ; 46(6): 1427-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27064265

RESUMO

The ability of pathogens to influence host cell survival is a crucial virulence factor. Listeria monocytogenes (Lm) infection is known to be associated with severe apoptosis of hepatocytes and spleen cells. This impairs host defense mechanisms and thereby facilitates the spread of intracellular pathogens. The general mechanisms of apoptosis elicited by Lm infection are understood, however, the roles of BH3-only proteins during primary Lm infection have not been examined. To explore the roles of BH3-only proteins in Lm-induced apoptosis, we studied Listeria infections in mice deficient in Bim, Bid, Noxa or double deficient in BimBid or BimNoxa. We found that BimNoxa double knockout mice were highly resistant to high-dose challenge with Listeria. Decreased bacterial burden and decreased host cell apoptosis were found in the spleens of these mice. The ability of the BH3-deficient mice to clear bacterial infection more efficiently than WT was correlated with increased concentrations of ROS, neutrophil extracellular DNA trap release and downregulation of TNF-α. Our data show a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic host cell death during Listeria infection.


Assuntos
Apoptose , Listeria monocytogenes , Listeriose/etiologia , Listeriose/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Proteína 11 Semelhante a Bcl-2/deficiência , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Armadilhas Extracelulares/imunologia , Feminino , Expressão Gênica , Listeriose/mortalidade , Listeriose/patologia , Masculino , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Espécies Reativas de Oxigênio/metabolismo , Baço/imunologia , Baço/metabolismo , Baço/patologia , Taxa de Sobrevida
10.
Proc Natl Acad Sci U S A ; 111(29): 10450-5, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24994904

RESUMO

Overexpression of the v-myc avian myelocytomatosis viral oncogene homolog (MYC) oncogene is one of the most commonly implicated causes of human tumorigenesis. MYC is known to regulate many aspects of cellular biology including glucose and glutamine metabolism. Little is known about the relationship between MYC and the appearance and disappearance of specific lipid species. We use desorption electrospray ionization mass spectrometry imaging (DESI-MSI), statistical analysis, and conditional transgenic animal models and cell samples to investigate changes in lipid profiles in MYC-induced lymphoma. We have detected a lipid signature distinct from that observed in normal tissue and in rat sarcoma-induced lymphoma cells. We found 104 distinct molecular ions that have an altered abundance in MYC lymphoma compared with normal control tissue by statistical analysis with a false discovery rate of less than 5%. Of these, 86 molecular ions were specifically identified as complex phospholipids. To evaluate whether the lipid signature could also be observed in human tissue, we examined 15 human lymphoma samples with varying expression levels of MYC oncoprotein. Distinct lipid profiles in lymphomas with high and low MYC expression were observed, including many of the lipid species identified as significant for MYC-induced animal lymphoma tissue. Our results suggest a relationship between the appearance of specific lipid species and the overexpression of MYC in lymphomas.


Assuntos
Metabolismo dos Lipídeos , Linfoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Espectrometria de Massas por Ionização por Electrospray , Proteínas ras/metabolismo
11.
Acta Virol ; 61(1): 13-21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28105850

RESUMO

Alzheimer's disease (AD) the most common form of dementia is characterized by cognitive decline and progressive loss of neurons in the central nervous system. Despite huge scientific progress, there are only few animal models that recapitulate at least majority of the AD pathology and related symptomatology. Therefore, alternative methods to develop animal models for neurodegenerative diseases are constantly explored. Recently, recombinant adeno-associated viruses (AAVs) are widely used viral vectors in development of novel models for neurodegenerative diseases. AAV vectors expressing full length, mutant or truncated forms of tau demonstrate early and robust pathology characterized by AT8 positivity, NFT formation, motor and cognitive deficits. Furthermore, AAVs have been used in expression of tau in amyloid rodent models thus developing both lesions of amyloid and tau therefore recapitulating AD like features. Major advantage of AAV as a delivery system is the site specific expression of tau, mostly in hippocampus and cortex, and thus elimination of unwanted ectopic transgene expression. These novel models may help in better understanding of AD etiopathogenesis and provide a platform for development and testing of disease modifying drugs in preclinical efficacy studies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Modelos Biológicos , Proteínas tau/metabolismo , Adenoviridae , Animais , Humanos , Organismos Geneticamente Modificados , Proteínas tau/genética
12.
Biochim Biophys Acta ; 1851(1): 51-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25150974

RESUMO

Lipids in the nervous system accomplish a great number of key functions, from synaptogenesis to impulse conduction, and more. Most of the lipids of the nervous system are localized in myelin sheaths. It has long been known that myelin structure and brain homeostasis rely on specific lipid-protein interactions and on specific cell-to-cell signaling. In more recent years, the growing advances in large-scale technologies and genetically modified animal models have provided valuable insights into the role of lipids in the nervous system. Key findings recently emerged in these areas are here summarized. In addition, we briefly discuss how this new knowledge can open novel approaches for the treatment of diseases associated with alteration of lipid metabolism/homeostasis in the nervous system. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Sistema Nervoso/metabolismo , Sistema Nervoso/fisiopatologia , Animais , Humanos
13.
Cytometry A ; 85(6): 537-47, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664821

RESUMO

Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micromechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo-trapping suction manifold, drug delivery manifold, and optically transparent indium tin oxide heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves, and embedded miniaturized fluorescent USB microscope. Our results showed that the innovative device has 100% embryo-trapping efficiency while supporting normal embryo development for up to 72 hr in a confined microfluidic environment. We also showed data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational antiangiogenic agents in transgenic zebrafish lines. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the lab-on-a-chip systems a step closer to realization of complete analytical automation.


Assuntos
Ecotoxicologia , Preparações Farmacêuticas/administração & dosagem , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Descoberta de Drogas , Ecotoxicologia/instrumentação , Ecotoxicologia/métodos , Embrião não Mamífero/efeitos dos fármacos , Humanos , Cinética , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
14.
Curr Rev Clin Exp Pharmacol ; 19(4): 295-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284707

RESUMO

AD disease (AD) is a multifaceted and intricate neurodegenerative disorder characterized by intracellular neurofibrillary tangle (NFT) formation and the excessive production and deposition of Aß senile plaques. While transgenic AD models have been found instrumental in unravelling AD pathogenesis, they involve cost and time constraints during the preclinical phase. Zebrafish, owing to their simplicity, well-defined behavioural patterns, and relevance to neurodegenerative research, have emerged as a promising complementary model. Zebrafish possess glutaminergic and cholinergic pathways implicated in learning and memory, actively contributing to our understanding of neural transmission processes. This review sheds light on the molecular mechanisms by which various neurotoxic agents, including okadaic acid (OKA), cigarette smoke extract, metals, and transgenic zebrafish models with genetic similarities to AD patients, induce cognitive impairments and neuronal degeneration in mammalian systems. These insights may facilitate the identification of effective neurotoxic agents for replicating AD pathogenesis in the zebrafish brain. In this comprehensive review, the pivotal role of zebrafish models in advancing our comprehension of AD is emphasized. These models hold immense potential for shaping future research directions and clinical interventions, ultimately contributing to the development of novel AD therapies.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Peixe-Zebra , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Animais Geneticamente Modificados
15.
Biology (Basel) ; 13(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534450

RESUMO

Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.

17.
Handb Clin Neurol ; 193: 3-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803818

RESUMO

With a current lack of disease-modifying treatments, an initiative toward implementing a precision medicine approach for treating Parkinson's disease (PD) has emerged. However, challenges remain in how to define and apply precision medicine in PD. To accomplish the goal of optimally targeted and timed treatment for each patient, preclinical research in a diverse population of rodent models will continue to be an essential part of the translational path to identify novel biomarkers for patient diagnosis and subgrouping, understand PD disease mechanisms, identify new therapeutic targets, and screen therapeutics prior to clinical testing. This review highlights the most common rodent models of PD and discusses how these models can contribute to defining and implementing precision medicine for the treatment of PD.


Assuntos
Doença de Parkinson , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/diagnóstico , alfa-Sinucleína , Roedores , Medicina de Precisão , Modelos Animais de Doenças
18.
Cell Rep ; 42(4): 112325, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37002923

RESUMO

The musculoskeletal system relies on the integration of multiple components with diverse physical properties, such as striated muscle, tendon, and bone, that enable locomotion and structural stability. This relies on the emergence of specialized, but poorly characterized, interfaces between these various elements during embryonic development. Within the appendicular skeleton, we show that a subset of mesenchymal progenitors (MPs), identified by Hic1, do not contribute to the primary cartilaginous anlagen but represent the MP population, whose progeny directly contribute to the interfaces that connect bone to tendon (entheses), tendon to muscle (myotendinous junctions), and the associated superstructures. Furthermore, deletion of Hic1 leads to skeletal defects reflective of deficient muscle-bone coupling and, consequently, perturbation of ambulation. Collectively, these findings show that Hic1 identifies a unique MP population that contributes to a secondary wave of bone sculpting critical to skeletal morphogenesis.


Assuntos
Músculo Esquelético , Tendões , Osteogênese , Osso e Ossos , Cartilagem
19.
Heliyon ; 9(7): e17851, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37456012

RESUMO

Aims: Upregulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) contributes to the pathogenesis of cardiovascular disease, including hypertension. Transgenic rats expressing the human angiotensinogen gene [TGR (hAGT)L1623] are a new novel humanized model of hypertension that associates with declines in cardiac contractile function and ß-adrenergic receptor (AR) reserve. The molecular mechanisms are unclear. We tested the hypothesis that in TGR (hAGT)L1623 rats, left ventricular (LV) myocyte CaMKIIδ and ß3-AR are upregulated, but ß1-AR is down-regulated, which are important causes of cardiac dysfunction and ß-AR desensitization. Main methods: We compared LV myocyte CaMKIIδ, CaMKIIδ phosphorylation (at Thr287) (pCaMKIIδ), and ß1-and ß3-AR expressions and determined myocyte functional and [Ca2+]I transient ([Ca2+]iT) responses to ß-AR stimulation with and without pretreatment of myocytes using an inhibitor of CaMKII, KN-93 (10-6 M, 30 min) in male Sprague Dawley (SD; N = 10) control and TGR (hAGT)L1623 (N = 10) adult rats. Key findings: Hypertension in TGR (hAGT)L1623 rats was accompanied by significantly increased LV myocyte ß3-AR protein levels and reduced ß1-AR protein levels. CaMKIIδ phosphorylation (at Thr287), pCaMKIIδ was significantly increased by 35%. These changes were followed by significantly reduced basal cell contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca2+]iT. Isoproterenol (10-8 M) produced significantly smaller increases in dL/dtmax, dR/dtmax, and [Ca2+]iT. Moreover, only in TGR (hAGT)L1623 rats, pretreatment of LV myocytes with KN-93 (10-6 M, 30 min) fully restored normal basal and isoproterenol-stimulated myocyte contraction, relaxation, and [Ca2+]iT. Significance: LV myocyte CaMKIIδ overactivation with associated contrast changes in ß3-AR and ß1-AR may be the key molecular mechanism for the abnormal contractile phenotype and ß-AR desensitization in this humanized model of hypertension.

20.
Lab Anim Res ; 39(1): 33, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082453

RESUMO

Alzheimer's disease (AD) is a multifactorial, rapidly progressing neurodegenerative disorder. As the exact cause of the disease is still unclear, the drug development is very challenging. This review encompasses the commonly used AD models involving various chemicals, heavy metals and endogenous substances induced models and the transgenic models. It also provides insight into the reliable emerging models of AD that may overcome the shortcomings associated with available models. Chemicals like streptozotocin, scopolamine, colchicine and okadaic acid render the animal susceptible to neuroinflammation and oxidative stress induced neurodegeneration along with amyloid-ß deposition and tau hyperphosphorylation. Similarly, endogenous substances like acrolein and amyloid-ß 1-42 are efficient in inducing the major pathologies of AD. Heavy metals like aluminum and fluoride and mixture of these have been reported to induce neurotoxicity therefore are used as animal models for AD. Transgenic models developed as a result of knock-in or knock-out of certain genes associated with AD including PDAPP, APP23, Tg2576, APP/PS1, 3 × Tg and 5 × FAD have also been incorporated in this study. Further, emerging and advanced pathomimetic models of AD are provided particular interest here which will add on to the current knowledge of animal models and may aid in the drug development process and deepen our understanding related to AD pathogenesis. These newly discovered models include oAß25-35 model, transgenic model expressing 82-kDa ChAT, oDGal mouse and APP knock-in rat. This study may aid in the selection of suitable model for development of novel potent therapeutics and for exploring detailed pathogenic mechanism of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA