Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.417
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2401757121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38820004

RESUMO

We experimentally demonstrate the creation of defects in monolayer WSe2 via nanopillar imprinting and helium ion irradiation. Based on the first method, we realize atomically thin vertical tunneling light-emitting diodes based on WSe2 monolayers hosting quantum emitters at deterministically specified locations. We characterize these emitters by investigating the evolution of their emission spectra in external electric and magnetic fields, as well as by inducing electroluminescence at low temperatures. We identify qualitatively different types of quantum emitters and classify them according to the dominant electron-hole recombination paths, determined by the mechanisms of intervalley mixing occurring in fundamental conduction and/or valence subbands.

2.
Proc Natl Acad Sci U S A ; 119(39): e2208830119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122203

RESUMO

Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.


Assuntos
Nanosferas , Medicina de Precisão , Refratometria , Molibdênio , Nanosferas/uso terapêutico , Medicina de Precisão/instrumentação , Água
3.
Nano Lett ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158041

RESUMO

Achieving robust electrical contacts is crucial for realizing the promise of monolayer 2D semiconductors such as semiconducting transition metal dichalcogenides (s-TMDs) in electronics. Despite recent breakthroughs, a gap remains between the experimental and theoretical understanding of metal-s-TMDs contacts. This study explores bismuth semimetal contacts to monolayer MoSe2, using a platform that minimizes experimental sources of uncertainty; we combine contact-front and contact-end measurements to measure key parameters like specific resistivity (ρc) and transfer length (Lt). We find that the resistivity of MoSe2 under the contacts is enhanced due to charge transfer that can be modeled using a self-consistent approach. In contrast, ab initio calculations of the interlayer charge transfer rate are inconsistent with the measured value of ρc, highlighting the need for new theoretical approaches.

4.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855978

RESUMO

Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe2 and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity. We show that spatial modulation of the dielectric environment within the photonic crystal unit cell results in the formation of two distinct excitonic species with significantly different nonlinear responses of the corresponding charged exciton-polaritons under optical pumping. This behavior enables optical switching with ultrashort laser pulses and can be sensitively controlled via an electrostatic gate voltage. Our results open new avenues toward the development of active polaritonic devices in a compact chip-compatible implementation.

5.
Nano Lett ; 24(28): 8465-8471, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976772

RESUMO

The mechanical and thermal properties of transition metal dichalcogenides (TMDs) are directly relevant to their applications in electronics, thermoelectric devices, and heat management systems. In this study, we use a machine learning (ML) approach to parametrize molecular dynamics (MD) force fields to predict the mechanical and thermal transport properties of a library of monolayered TMDs (MoS2, MoTe2, WSe2, WS2, and ReS2). The ML-trained force fields were then employed in equilibrium MD simulations to calculate the lattice thermal conductivities of the foregoing TMDs and to investigate how they are affected by small and large mechanical strains. Furthermore, using nonequilibrium MD, we studied thermal transport across grain boundaries. The presented approach provides a fast albeit accurate methodology to compute both mechanical and thermal properties of TMDs, especially for relatively large systems and spatially complex structures, where density functional theory computational cost is prohibitive.

6.
Nano Lett ; 24(26): 7903-7910, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899791

RESUMO

2D transition metal dichalcogenides (TMDs) exhibit exceptional resilience to mechanical deformation. Applied strain can have pronounced effects on properties such as the bandgaps and exciton dynamics of TMDs, via deformation potentials and electromechanical coupling. In this work, we use piezoresponse force microscopy to show that the inhomogeneous strain from nanobubbles produces dramatic, localized enhancements of the electromechanical response of monolayer MoS2. Nanobubbles with diameters under 100 nm consistently produce an increased piezoresponse that follows the features' topography, while larger bubbles exhibit a halo-like profile, with maximum piezoresponse near the periphery. We show that spatial filtering enables these effects to be eliminated in the quantitative determination of effective piezoelectric or flexoelectric coefficients. Numerical strain modeling reveals a correlation between the hydrostatic strain gradient and the effective piezoelectric coefficient in large MoS2 nanobubbles, suggesting a localized variation in electromechanical coupling due to symmetry reduction induced by inhomogeneous strain.

7.
Nano Lett ; 24(26): 8117-8125, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38901032

RESUMO

Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.

8.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949123

RESUMO

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

9.
Nano Lett ; 24(31): 9575-9582, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051155

RESUMO

Interlayer excitons (IXs) in van der Waals heterostructures with static out of plane dipole moment and long lifetime show promise in the development of exciton based optoelectronic devices and the exploration of many body physics. However, these IXs are not always observed, as the emission is very sensitive to lattice mismatch and twist angle between the constituent materials. Moreover, their emission intensity is very weak compared to that of corresponding intralayer excitons at room temperature. Here we report the room-temperature realization of twist angle independent momentum direct IX in the heterostructures of bulk PbI2 and bilayer WS2. Momentum conserving transitions combined with the large band offsets between the constituent materials enable intense IX emission at room temperature. A long lifetime (∼100 ns), noticeable Stark shift, and tunability of IX emission from 1.70 to 1.45 eV by varying the number of WS2 layers make these heterostructures promising to develop room temperature exciton based optoelectronic devices.

10.
Nano Lett ; 24(31): 9658-9665, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052446

RESUMO

Dielectric phase gradient metasurfaces have emerged as promising candidates to shrink bulky optical elements to subwavelength thickness scale based on dielectric meta-atoms. These meta-atoms strongly interact with light, thus offering excellent phase manipulation of incident light. However, to fulfill 2π phase control using meta-atoms, the metasurface thickness, to date, is limited to the order of 102 nm. Here, we present the thickness scaling down of phase gradient metasurfaces to <λ/20 by using excitonic van der Waals metasurfaces. High-refractive-index enabled by exciton resonances and symmetry-breaking nanostructures in the patterned layered tungsten disulfide (WS2) corporately enable quasibound states in the continuum in WS2 metasurfaces, which consequently yield complete phase regulation of 2π with the thickness down to 35 nm. To illustrate the concept, we have experimentally demonstrated beam steering, focusing, and holographic display using WS2 metasurfaces. We envision our results unveiling new venues for ultimate thin phase gradient metasurfaces.

11.
Nano Lett ; 24(1): 493-500, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148179

RESUMO

Compositional tunability, an indispensable parameter for modifying the properties of materials, can open up new applications for van der Waals (vdW) layered materials such as transition-metal dichalcogenides (TMDCs). To date, multielement alloy TMDC layers are obtained via exfoliation from bulk polycrystalline powders. Here, we demonstrate direct deposition of high-entropy alloy disulfide, (VNbMoTaW)S2, layers with controllable thicknesses on free-standing graphene membranes and on bare and hBN-covered Al2O3(0001) substrates via ultra-high-vacuum reactive dc magnetron sputtering of the VNbMoTaW target in Kr and H2S gas mixtures. Using a combination of density functional theory calculations, Raman spectroscopy, X-ray diffraction, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we determine that the as-deposited layers are single-phase, 2H-structured, and 0001-oriented (V0.10Nb0.16Mo0.19Ta0.28W0.27)S2.44. Our synthesis route is general and applicable for heteroepitaxial growth of a wide variety of TMDC alloys and potentially other multielement alloy vdW compounds with the desired compositions.

12.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

13.
Nano Lett ; 24(9): 2789-2797, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407030

RESUMO

Two-dimensional materials are expected to play an important role in next-generation electronics and optoelectronic devices. Recently, twisted bilayer graphene and transition metal dichalcogenides have attracted significant attention due to their unique physical properties and potential applications. In this study, we describe the use of optical microscopy to collect the color space of chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) and the application of a semantic segmentation convolutional neural network (CNN) to accurately and rapidly identify thicknesses of MoS2 flakes. A second CNN model is trained to provide precise predictions on the twist angle of CVD-grown bilayer flakes. This model harnessed a data set comprising over 10,000 synthetic images, encompassing geometries spanning from hexagonal to triangular shapes. Subsequent validation of the deep learning predictions on twist angles was executed through the second harmonic generation and Raman spectroscopy. Our results introduce a scalable methodology for automated inspection of twisted atomically thin CVD-grown bilayers.

14.
Nano Lett ; 24(6): 1835-1842, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315833

RESUMO

Strain engineering modifies the optical and electronic properties of atomically thin transition metal dichalcogenides. Highly inhomogeneous strain distributions in two-dimensional materials can be easily realized, enabling control of properties on the nanoscale; however, methods for probing strain on the nanoscale remain challenging. In this work, we characterize inhomogeneously strained monolayer MoS2 via Kelvin probe force microscopy and electrostatic gating, isolating the contributions of strain from other electrostatic effects and enabling the measurement of all components of the two-dimensional strain tensor on length scales less than 100 nm. The combination of these methods is used to calculate the spatial distribution of the electrostatic potential resulting from piezoelectricity, presenting a powerful way to characterize inhomogeneous strain and piezoelectricity that can be extended toward a variety of 2D materials.

15.
Nano Lett ; 24(22): 6592-6600, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787539

RESUMO

Monolayer transition metal dichalcogenides exhibit valley-dependent excitonic characters with a large binding energy, acting as the building block for future optoelectronic functionalities. Herein, combined with pump-probe ultrafast transient transmission spectroscopy and theoretical simulations, we reveal the chirality-dependent trion dynamics in h-BN encapsulated monolayer tungsten disulfide. By resonantly pumping trions in a single valley and monitoring their temporal evolution, we identify the temperature-dependent competition between two relaxation channels driven by chirality-dependent scattering processes. At room temperature, the phonon-assisted upconversion process predominates, converting excited trions to excitons within the same valley on a sub-picosecond (ps) time scale. As temperature decreases, this process becomes less efficient, while alternative channels, notably valley depolarization process for trions, assume importance, leading to an increase of trion density in the unpumped valley within a ps time scale. Our time-resolved valley-contrast results provide a comprehensive insight into trion dynamics in 2D materials, thereby advancing the development of novel valleytronic devices.

16.
Nano Lett ; 24(32): 9824-9831, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39056490

RESUMO

Using heterodyne transient grating spectroscopy, we observe a significant enhancement of exciton diffusion in a monolayer WSe2 stacked on graphene. The diffusion dynamics can be optically tuned within a few picoseconds by altering the photoexcited carrier density in graphene. The effective diffusion constant in initial picoseconds in the WSe2/graphene heterostructure is (40.3 ± 4.5) cm2 s-1, representing a substantial improvement over (2.1 ± 0.8) cm2 s-1, typical for an isolated WSe2 monolayer. This enhancement can be understood in terms of a transient screening of impurities, charge traps, and defect states in WSe2 by photoexcited charge carriers in graphene. Furthermore, diffusion within WSe2 is affected by interlayer interactions, such as charge transfer, varying with the incident excitation fluence. These findings underscore the dynamical nature of screening and diffusion processes in heterostructures of 2D semiconductors and graphene and provide insights for future applications of these systems in ultrafast optoelectronic devices.

17.
Nano Lett ; 24(33): 10275-10283, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106329

RESUMO

Defect engineering is widely used to impart the desired functionalities on materials. Despite the widespread application of atomic-resolution scanning transmission electron microscopy (STEM), traditional methods for defect analysis are highly sensitive to random noise and human bias. While deep learning (DL) presents a viable alternative, it requires extensive amounts of training data with labeled ground truth. Herein, employing cycle generative adversarial networks (CycleGAN) and U-Nets, we propose a method based on a single experimental STEM image to tackle high annotation costs and image noise for defect detection. Not only atomic defects but also oxygen dopants in monolayer MoS2 are visualized. The method can be readily extended to other two-dimensional systems, as the training is based on unit-cell-level images. Therefore, our results outline novel ways to train the model with minimal data sets, offering great opportunities to fully exploit the power of DL in the materials science community.

18.
Nano Lett ; 24(33): 10124-10130, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39132976

RESUMO

In this study, we investigate the impact of two-dimensional MoS2 coating on the optical properties of surface GaN/AlGaN quantum wells (QWs). A strong enhancement in GaN QW light emission is observed with monolayer-MoS2 coating, yielding luminescence intensity comparable to that from a QW capped by an AlGaN barrier. Our results demonstrate that MoS2, despite its quite different nature from III-nitride semiconductors, acts as an effective barrier for surface GaN QWs and suppresses spatially localized intrinsic surface states. This finding provides novel pathways for efficient III-nitride surface passivation.

19.
Nano Lett ; 24(35): 10805-10812, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39038223

RESUMO

This study delves into the intriguing properties of the 1H/1T-TaS2 van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient. Through a comprehensive investigation combining low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, non-contact atomic force microscopy, and first-principles calculations, we propose an alternative interpretation. The transparency effect arises from a weak yet substantial electronic coupling between the 1H and 1T layers, challenging prior understanding of the system. Our results highlight the critical role played by interlayer electronic interactions in van der Waals heterostructures to determine the final ground states of the systems.

20.
Nano Lett ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213644

RESUMO

Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA