Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 72, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755460

RESUMO

Air pollution caused by tropospheric ozone contributes to the decline of forest ecosystems; for instance, sacred fir, Abies religiosa (Kunth) Schltdl. & Cham. forests in the peri-urban region of Mexico City. Individual trees within these forests exhibit variation in their response to ozone exposure, including the severity of visible symptoms in needles. Using RNA-Seq metatranscriptomic data and ITS2 metabarcoding, we investigated whether symptom variation correlates with the taxonomic and functional composition of fungal mycobiomes from needles collected in this highly polluted area in the surroundings of Mexico City. Our findings indicate that ozone-related symptoms do not significantly correlate with changes in the taxonomic composition of fungal mycobiomes. However, genes coding for 30 putative proteins were differentially expressed in the mycobiome of asymptomatic needles, including eight genes previously associated with resistance to oxidative stress. These results suggest that fungal communities likely play a role in mitigating the oxidative burst caused by tropospheric ozone in sacred fir. Our study illustrates the feasibility of using RNA-Seq data, accessible from global sequence repositories, for the characterization of fungal communities associated with plant tissues, including their gene expression.


Assuntos
Poluição do Ar , Fungos , Micobioma , Folhas de Planta , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Folhas de Planta/microbiologia , México , Poluição do Ar/efeitos adversos , Ozônio , Estresse Fisiológico , Cidades
2.
Int J Biometeorol ; 68(5): 991-1004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528211

RESUMO

An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.


Assuntos
Clorofila , Alho , Ozônio , Fotossíntese , Folhas de Planta , Ozônio/farmacologia , Alho/efeitos dos fármacos , Clorofila/metabolismo , Clorofila/análise , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Peroxidase/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Poluentes Atmosféricos , Ácido Ascórbico/análise
3.
Appl Environ Microbiol ; 89(4): e0018023, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022183

RESUMO

Ethylenediurea (EDU) can effectively mitigate the crop yield loss caused by ozone (O3), a major, phytotoxic air pollutant. However, the relevant mechanisms are poorly understood, and the effect of EDU on soil ecosystems has not been comprehensively examined. In this study, a hybrid rice variety (Shenyou 63) was cultivated under ambient O3 and sprayed with 450 ppm EDU or water every 10 days. Real time quantitative polymerase chain reaction (RT-qPCR) showed that EDU had no significant effect on the microbial abundance in either rhizospheric or bulk soils. By applying both metagenomic sequencing and the direct assembly of nitrogen (N)-cycling genes, EDU was found to decrease the abundance of functional genes related to nitrification and denitrification processes. Moreover, EDU increased the abundance of genes involved in N-fixing. Although the abundance of some functional genes did not change significantly, nonmetric multidimensional scaling (NMDS) and a principal coordinates analysis (PCoA) suggested that the microbial community structure involved in N cycling was altered by EDU. The relative abundances of nifH-and norB-harboring microbial genera in the rhizosphere responded differently to EDU, suggesting the existence of functional redundancy, which may play a key role in sustaining microbially mediated N-cycling under ambient O3. IMPORTANCE Ethylenediurea (EDU) is hitherto the most efficient phytoprotectant agent against O3 stress. However, the underlying biological mechanisms of its mode of action are not clear, and the effects of EDU on the environment are still unknown, limiting its large-scale application in agriculture. Due to its sensitivity to environmental changes, the microbial community can be used as an indicator to assess the environmental impacts of agricultural practices on soil quality. This study aimed to unravel the effects of EDU spray on the abundance, community structure, and ecological functions of microbial communities in the rhizosphere of rice plants. Our study provides a deep insight into the impact of EDU spray on microbial-mediated N cycling and the structure of N-cycling microbial communities. Our findings help to elucidate the mode of action of EDU in alleviating O3 stress in crops from the perspective of regulating the structure and function of the rhizospheric soil microbial community.


Assuntos
Microbiota , Oryza , Ozônio , Solo/química , Ozônio/farmacologia , Microbiologia do Solo , Nitrogênio
4.
Environ Sci Technol ; 57(46): 18246-18258, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37661931

RESUMO

Gaps in the measurement series of atmospheric pollutants can impede the reliable assessment of their impacts and trends. We propose a new method for missing data imputation of the air pollutant tropospheric ozone by using the graph machine learning algorithm "correct and smooth". This algorithm uses auxiliary data that characterize the measurement location and, in addition, ozone observations at neighboring sites to improve the imputations of simple statistical and machine learning models. We apply our method to data from 278 stations of the year 2011 of the German Environment Agency (Umweltbundesamt - UBA) monitoring network. The preliminary version of these data exhibits three gap patterns: shorter gaps in the range of hours, longer gaps of up to several months in length, and gaps occurring at multiple stations at once. For short gaps of up to 5 h, linear interpolation is most accurate. Longer gaps at single stations are most effectively imputed by a random forest in connection with the correct and smooth. For longer gaps at multiple stations, the correct and smooth algorithm improved the random forest despite a lack of data in the neighborhood of the missing values. We therefore suggest a hybrid of linear interpolation and graph machine learning for the imputation of tropospheric ozone time series.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Aprendizado de Máquina
5.
Environ Res ; 236(Pt 2): 116816, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543123

RESUMO

Tropospheric ozone (O3), the most important phytotoxic air pollutant, can deteriorate crop quality and productivity. Notably, satellite and ground-level observations-based multimodel simulations demonstrate that the present and future predicted O3 exposures could threaten food security. Hence, the present study aims at reviewing the phytotoxicity caused by O3 pollution, which threatens the food security. The present review encompasses three major aspects; wherein the past and prevailing O3 concentrations in various regions were compiled at first, followed by discussing the physiological, biochemical and yield responses of economically important crop species, and considering the potential of O3 protectants to alleviate O3-induced phytotoxicity. Finally, the empirical data reported in the literature were quantitatively analysed to show that O3 causes detrimental effect on physiological traits, photosynthetic pigments, growth and yield attributes. The review on prevailing O3 concentrations over various regions, where economically important crop are grown, and their negative impact would support policy makers to implement air pollution regulations and the scientific community to develop countermeasures against O3 phytotoxicity for maintaining food security.

6.
Environ Sci Technol ; 56(15): 10586-10595, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35855520

RESUMO

Tropospheric ozone (O3) continues to be a threat to human health and agricultural productivity. While O3 control is challenging, tracking underlying formation mechanisms provides insights for regulatory directions. Here, we describe a comprehensive analysis of the effects of changing emissions on O3 formation mechanisms with observational evidence. We present a new approach that provides a quantitative metric for the ozone production rate (OPR) and its sensitivity to precursor levels by interpreting two decades of in situ observations of the six criteria air pollutants(2001-2018). Applying to the South Coast Air Basin (SoCAB), California, we show that by 2016-2018, the basin was at the transition region between nitrogen oxide (NOx)-limited and volatile organic compound (VOC)-limited chemical regimes. Assuming future weather conditions are similar to 2016-2018, we predict that NOx-focused reduction is required to reduce the number of summer days the SoCAB is in violation of the National Ambient Air Quality Standard (70 ppbv) for O3. Roughly, ∼40% (∼60%) NOx reductions are required to reduce the OPR by ∼1.8 ppb/h (∼3.3 ppb/h). This change would reduce the number of violation days from 28 to 20% (10%) in a year, mostly in summertime. Concurrent VOC reductions which reduce the production rate of HOx radicals would also be beneficial.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , California , Monitoramento Ambiental , Humanos , Ozônio/análise
7.
Environ Sci Technol ; 56(11): 6978-6987, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271270

RESUMO

Urbanization perturbs air pollutants from a dynamic and thermodynamic perspective, which has inspired extensive investigations in China due to rapid urban land expansion in the past four decades. However, knowledge gaps remain in the long-term and nationwide responses to air pollutants to urbanization. The evolution of tropospheric ozone associated with urban land expansion across China was assessed from 1980 to 2017 using a coupled WRF-Chem model based on a recently updated land use change (LUC) data set. The results revealed that urban-land expansion drove growing ozone trends for this period and contributed about 3-9% to its summer maximum concentrations during the 2010s in major urban agglomerations across China. The association between a long-term change in summer O3 concentrations and LUC after excluding the effect of precursor emissions and meteorological conditions and causes of interannual (short-term) variations in O3 concentrations induced by urban-land expansion were also explored by examining the relationships between ozone fluctuations and meteorological variables.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise
8.
Environ Res ; 203: 111857, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400164

RESUMO

Tropospheric ozone (O3) is a phytotoxic pollutant that leads to a reduction in crop yield. Nanotechnology offers promising solutions to stem such yield losses against abiotic stresses. Silver nanoparticles are major nanomaterials used in consumer products however, their impact on crops under abiotic stress is limited. In this study, we evaluated the anti-ozonant efficacy of biogenic silver nanoparticles (B-AgNPs) and compared them with a model anti-ozonant ethylenediurea (EDU) against ozone phyto-toxicity. Growth, physiology, antioxidant defense, and yield parameters in two wheat cultivars (HD-2967 & DBW-17), treated with B-AgNPs (25 mg/L and 50 mg/L) and EDU (150 mg/L and 300 mg/L), were studied at both vegetative and reproductive stages. During the experimental period, the average ambient ozone concentration and accumulated dose of ozone over a threshold of 40 ppb (AOT40) (8 h day-1) were found to be 60 ppb and 6 ppm h, respectively, which were sufficient to cause ozone-induced phyto-toxicity in wheat. Growth and yield for B-AgNPs as well as EDU-treated plants were significantly higher in both the tested cultivars over control ones. However, 25 mg/L B-AgNPs treatment showed a more pronounced effect in terms of yield attributes and its lower accumulation in grains for both cultivars. DBW-17 cultivar responded better with B-AgNPs and EDU treatments as compared to HD-2967. Meanwhile, foliar exposure of B-AgNPs (dose; 25 mg/L) significantly enhanced grain weight plant-1, thousand-grain weight, and harvest index by 54.22 %, 29.46 %, and 14.21 %, respectively in DBW-17, when compared to control. B-AgNPs could enhance ozone tolerance in wheat by increasing biochemical and physiological responses. It is concluded that B-AgNPs at optimum concentrations were as effective as EDU, hence could be a promising ozone protectant for wheat.


Assuntos
Nanopartículas Metálicas , Ozônio , Grão Comestível , Nanopartículas Metálicas/toxicidade , Ozônio/toxicidade , Prata/toxicidade , Triticum
9.
Environ Res ; 211: 113048, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257686

RESUMO

Tropospheric ozone (O3) is one of the most concernedair pollutants dueto its widespread impacts on land vegetated ecosystems and human health. Ozone is also the third greenhouse gas for radiative forcing. Consequently, it should be carefully and continuously monitored to estimate its potential adverse impacts especially inthose regions where concentrations are high. Continuous large-scale O3 concentrations measurement is crucial but may be unfeasible because of economic and practical limitations; therefore, quantifying the real impact of O3over large areas is currently an open challenge. Thus, one of the final objectives of O3 modelling is to reproduce maps of continuous concentrations (both spatially and temporally) and risk assessment for human and ecosystem health. We here reviewedthe most relevant approaches used for O3 modelling and mapping starting from the simplest geo-statistical approaches andincreasing in complexity up to simulations embedded into the global/regional circulation models and pro and cons of each mode are highlighted. The analysis showed that a simpler approach (mostly statistical models) is suitable for mappingO3concentrationsat the local scale, where enough O3concentration data are available. The associated error in mapping can be reduced by using more complex methodologies, based on co-variables. The models available at the regional or global level are used depending on the needed resolution and the domain where they are applied to. Increasing the resolution corresponds to an increase in the prediction but only up to a certain limit. However, with any approach, the ensemble models should be preferred.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Ecossistema , Humanos , Ozônio/análise , Medição de Risco
10.
Atmos Environ (1994) ; 284: 1-16, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775067

RESUMO

It is well known that exposure to ambient O3 can decrease growth in many tree species in the United States (US). Our study reports experimental data from outdoor open-top chamber (OTC) studies that quantify total biomass response changes for seedlings of 16 species native to western and eastern North America, which were exposed to several levels of elevated O3 for one or more years. The primary objective of this study is to establish a reference set of parameters for these seedling exposure-response relationships using a 3-month (92 day) 12-hr W126 O3 metric used by US Environmental Protection Agency and other agencies to assess risk to trees from O3 exposure. We classified the 16 species according to their sensitivity, based on the biomass loss response functions to protect from a 5% biomass loss. The three-month 12-h W126 estimated to result in a 5% biomass loss was 2.5-9.2 ppm-h for sensitive species, 20.8-25.2 ppm-h for intermediate species, and > 28.7 ppm-h for insensitive species. The most sensitive tree species include black cherry, ponderosa pine, quaking aspen, red alder, American sycamore, tulip poplar and winged sumac. These species are ecologically important and widespread across US. The effects of O3 on whole-plant biomass depended on exposure duration and dynamics and on the number of successive years of exposure. These species-specific exposure-response relationships will allow US agencies and other groups to better estimate biomass losses based on ozone exposures in North America and can be used in risk assessment and scenario analyses.

11.
Environ Geochem Health ; 44(10): 3615-3637, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34661832

RESUMO

Air pollution and its effects on human health and the environment are one of the main concerns in urban areas. This study focuses on the distribution and changes in the concentrations of ozone and its precursors (i.e., NO, NO2 and CO) in Tehran for the 20-year period from 2001 to 2020. The effects of precursors and meteorological conditions (temperature, wind speed, dew point, humidity and rainfall) on ozone were investigated using data from 22 stations of the Air Quality Control Company (AQCC) and meteorological stations. Regression models were applied to evaluate the dependence of ozone concentration on its precursors and meteorological parameters based on monthly average values. Finally, the monthly and annual levels of surface ozone and total column ozone were compared during the study period. The results show that the average ozone concentration in Tehran varied substantially between 2001 and 2008, and decreased after 2008 when stringent air quality control measures were implemented. The highest average concentration of ozone occurred in the southwest of Tehran. Although mobile and resident sources play an important role in the release of precursors, the results also indicate a significant effect of meteorological conditions on the changes in ozone concentration. This study is an effective step toward a better understanding of ozone changes in Tehran under the changing influence of precursors and meteorological conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Humanos , Irã (Geográfico) , Dióxido de Nitrogênio/análise , Ozônio/análise
12.
J Environ Sci (China) ; 114: 126-135, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459478

RESUMO

Tropospheric ozone (O3) pollution is increasing in the Beijing-Tianjin-Hebei (BTH) region despite a significant decline in atmospheric fine aerosol particles (PM2.5) in recent years. However, the intrinsic reason for the elevation of the regional O3 is still unclear. In this study, we analyzed the spatio-temporal variations of tropospheric O3 and relevant pollutants (PM2.5, NO2, and CO) in the BTH region based on monitoring data from the China Ministry of Ecology and Environment during the period of 2014-2019. The results showed that summertime O3 concentrations were constant in Beijing (BJ, 0.06 µg/(m3•year)) but increased significantly in Tianjin (TJ, 9.09 µg/(m3•year)) and Hebei (HB, 6.06 µg/(m3•year)). Distinct O3 trends between Beijing and other cities in BTH could not be attributed to the significant decrease in PM2.5 (from -5.08 to -6.32 µg/(m3•year)) and CO (from -0.053 to -0.090 mg/(m3•year)) because their decreasing rates were approximately the same in all the cities. The relatively stable O3 concentrations during the investigating period in BJ may be attributed to a faster decreasing rate of NO2 (BJ: -2.55 µg/(m3•year); TJ: -1.16 µg/(m3•year); HB: -1.34 µg/(m3•year)), indicating that the continued reduction of NOx will be an effective mitigation strategy for reducing regional O3 pollution. Significant positive correlations were found between daily maximum 8 hr average (MDA8) O3 concentrations and vehicle population and highway freight transportation in HB. Therefore, we speculate that the increase in rural NOx emissions due to the increase in vehicle emissions in the vast rural areas around HB greatly accelerates regional O3 formation, accounting for the significant increasing trends of O3 in HB.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , China , Monitoramento Ambiental , Dióxido de Nitrogênio , Ozônio/análise , Material Particulado/análise , Emissões de Veículos
13.
Environ Sci Technol ; 55(13): 8542-8553, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132098

RESUMO

A comprehensive analysis of the temporal evolution of tropospheric ozone in Antarctica using more than 25 years of surface ozone and ozonesonde measurements reveals significant changes in tropospheric ozone there. It shows a positive trend in ozone at the surface and lower and mid-troposphere, but a negative trend in the upper troposphere. We also find significant links between different climate modes and tropospheric ozone in Antarctica and observe that changes in residual overturning circulation, the strength of the polar vortex, and stratosphere-troposphere exchange make noticeable variability in tropospheric ozone. Therefore, this study alerts of increasing ozone concentration in Antarctica, which would have a profound impact on the future climate of the region as tropospheric ozone has warming feedback to the Earth's climate.


Assuntos
Ozônio , Regiões Antárticas , Atmosfera , Clima , Ozônio/análise
14.
Environ Res ; 201: 111475, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34166663

RESUMO

Ozone (O3) is an oxidative air pollutant that affects plant growth. Moringa oleifera is a tree species distributed in the tropical and subtropical regions. This species presents high morphological plasticity, which increases its ability to tolerate stressful conditions, but with no O3 risk assessment calculated so far. The present study assessed the O3 risk to different M. oleifera ecotypes using exposure-based index (AOT40) or flux-based index (PODy - where y is a threshold of O3 uptake). PODy considers the O3 uptake through the stomata and the consequence of environmental climate conditions on stomatal conductance (gsto); thus, it is efficient in assessing O3 risk. Five M. oleifera ecotypes were subjected to ambient (Amb.); middle (Mid. X1.5), and High (x2.0) O3 concentrations for 77 days in a free-air controlled exposure facility (FACE). Leaf biomass (LB) was evaluated, and the biomass loss was projected assuming a clean atmosphere (10 ppb as 24 h O3 average). The gsto parameterization was calculated using the Jarvis-type multiplicative algorithm considering several climate factors, i.e., light intensity, air temperature, air vapor pressure deficit, and AOT40. Ozone exposure harmed the LB of all ecotypes. The high gsto (~559 mmol H2O m-2 s-1) can be considered the reason for the species' O3 sensitivity. M. oleifera is adapted to hot climate conditions, and gsto was restricted with air temperature (Tmin) below ~ 9 °C. As expected, the PODy index performed better than the AOT40 for estimating the O3 effect on biomass losses. We recommend a y threshold of 4 nmol m-2 s-1 to incorporate O3 effects on M. oleifera LB. To not exceed a 4% reduction of LB for any M. oleifera genotype, we recommend the critical levels of 1.1 mmol m-2 POD4.


Assuntos
Poluentes Atmosféricos , Moringa oleifera , Ozônio , Poluentes Atmosféricos/análise , Ecótipo , Ozônio/análise , Ozônio/toxicidade , Folhas de Planta , Árvores
15.
Environ Res ; 195: 110868, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581095

RESUMO

Date palms are highly economically important species in hot arid regions, which may suffer ozone (O3) pollution equivalently to heat and water stress. However, little is known about date palm sensitivity to O3. Therefore, to identify their resistance mechanisms against elevated O3, physiological parameters (leaf gas exchange, chlorophyll fluorescence and leaf pigments) and biomass growth responses to realistic O3 exposure were tested in an isoprene-emitting date palm (Phoenix dactylifera L. cv. Nabut Saif) by a Free-Air Controlled Exposure (FACE) facility with three levels of O3 (ambient [AA, 45 ppb as 24-h average], 1.5 x AA and 2 x AA). We found a reduction of photosynthesis only at 2 x AA although some foliar traits known as early indicators of O3 stress responded already at 1.5 x AA, such as increased dark respiration, reduced leaf pigment content, reduced maximum quantum yield of PSII, inactivation of the oxygen evolving complex of PSII and reduced performance index PITOT. As a result, O3 did not affect most of the growth parameters although significant declines of root biomass occurred only at 2 x AA. The major mechanism in date palm for reducing the severity of O3 impacts was a restriction of stomatal O3 uptake due to low stomatal conductance and O3-induced stomatal closure. In addition, an increased respiration in elevated O3 may indicate an enhanced capacity of catabolizing metabolites for detoxification and repair. Interestingly, date palm produced low amounts of monoterpenes, whose emission was stimulated in 2 x AA, although isoprene emission declined at both 1.5 and 2 x AA. Our results warrant more research on a biological significance of terpenoids in plant resistance against O3 stress.


Assuntos
Poluentes Atmosféricos , Ozônio , Phoeniceae , Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Fotossíntese , Folhas de Planta
16.
Proc Natl Acad Sci U S A ; 115(48): 12136-12141, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420500

RESUMO

Iodine is an important nutrient and a significant sink of tropospheric ozone, a climate-forcing gas and air pollutant. Ozone interacts with seawater iodide, leading to volatile inorganic iodine release that likely represents the largest source of atmospheric iodine. Increasing ozone concentrations since the preindustrial period imply that iodine chemistry and its associated ozone destruction is now substantially more active. However, the lack of historical observations of ozone and iodine means that such estimates rely primarily on model calculations. Here we use seasonally resolved records from an Alpine ice core to investigate 20th century changes in atmospheric iodine. After carefully considering possible postdepositional changes in the ice core record, we conclude that iodine deposition over the Alps increased by at least a factor of 3 from 1950 to the 1990s in the summer months, with smaller increases during the winter months. We reproduce these general trends using a chemical transport model and show that they are due to increased oceanic iodine emissions, coupled to a change in iodine speciation over Europe from enhanced nitrogen oxide emissions. The model underestimates the increase in iodine deposition by a factor of 2, however, which may be due to an underestimate in the 20th century ozone increase. Our results suggest that iodine's impact on the Northern Hemisphere atmosphere accelerated over the 20th century and show a coupling between anthropogenic pollution and the availability of iodine as an essential nutrient to the terrestrial biosphere.


Assuntos
Poluentes Atmosféricos/química , Gelo/análise , Iodo/química , Água do Mar/química , Atmosfera , Clima , Europa (Continente) , Ozônio/química , Estações do Ano
17.
Environ Monit Assess ; 193(2): 84, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33495931

RESUMO

In this paper, we described generation and performances of feedforward neural network models that could be used for a day ahead predictions of the daily maximum 1-h ozone concentration (1hO3) and 8-h average ozone concentration (8hO3) at one traffic and one background station in the urban area of Novi Sad, Serbia. The six meteorological variables for the day preceding the forecast and forecast day, ozone concentrations in the day preceding the forecast, the number of the day of the year, and the number of the weekday for which ozone prediction was performed were utilized as inputs. The three-layer perceptron neural network models with the best performance were chosen by testing with different numbers of neurons in the hidden layer and different activation functions. The mean bias error, mean absolute error, root mean squared error, correlation coefficient, and index of agreement or Willmott's Index for the validation data for 1hO3 forecasting were 0.005 µg m-3, 12.149 µg m-3, 15.926 µg m-3, 0.988, and 0.950, respectively, for the traffic station (Dnevnik), and - 0.565 µg m-3, 10.101 µg m-3, 12.962 µg m-3, 0.911, and 0.953, respectively, for the background station (Liman). For 8hO3 forecasting, statistical indicators were - 1.126 µg m-3, 10.614 µg m-3, 12.962 µg m-3, 0.910, and 0.948 respectively for the station Dnevnik and - 0.001 µg m-3, 8.574 µg m-3, 10.741 µg m-3, 0.936, and 0.966, respectively, for the station Liman. According to the Kolmogorov-Smirnov test, there is no significant difference between measured and predicted data. Models showed a good performance in forecasting days with the high values over a certain threshold.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Previsões , Meteorologia , Redes Neurais de Computação , Ozônio/análise , Sérvia
18.
J Environ Sci (China) ; 105: 138-149, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34130831

RESUMO

In the past decade, ozone (O3) pollution has been continuously worsening in most developing countries. The accurate identification of the nonlinear relationship between O3 and its precursors is a prerequisite for formulating effective O3 control measures. At present, precursor-based O3 isopleth diagrams are widely used to infer O3 control strategy at a particular location. However, there is frequently a large gap between the O3-precursor nonlinearity delineated by the O3 isopleths and the emission source control measures to reduce O3 levels. Consequently, we developed an emission source-based O3 isopleth diagram that directly illustrates the O3 level changes in response to synergistic control on two types of emission sources using a validated numerical modeling system and the latest regional emission inventory. Isopleths can be further upgraded to isosurfaces when co-control on three types of emission sources is investigated. Using Guangzhou and Foshan as examples, we demonstrate that similar precursor-based O3 isopleths can be associated with significantly different emission source co-control strategies. In Guangzhou, controlling solvent use emissions was the most effective approach to reduce peak O3 levels. In Foshan, co-control of on-road mobile, solvent use, and fixed combustion sources with a ratio of 3:1:2 or 3:1:3 was best to effectively reduce the peak O3 levels below 145 ppbv. This study underscores the importance of using emission source-based O3 isopleths and isosurface diagrams to guide a precursor emission control strategy that can effectively reduce the peak O3 levels in a particular area.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Poluição Ambiental , Ozônio/análise
19.
Rev Geophys ; 58(1)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33748825

RESUMO

Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.

20.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190329, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981436

RESUMO

In this study, we show using a state-of-the-art Earth system model, UKESM1, that emissions and climate scenario depending, there could be large changes in surface ozone by the end of the twenty-first century, with unprecedentedly large increases over South and East Asia. We also show that statistical modelling of the trends in future ozone works well in reproducing the model output between 1900 and 2050. However, beyond 2050, and especially under large climate change scenarios, the statistical model results are in poorer agreement with the fully interactive Earth system model output. This suggests that additional processes occurring in the Earth system model such as changes in the production of ozone at higher temperatures or changes in the influx of ozone from the stratosphere, which are not captured by the statistical model, have a first order impact on the evolution of surface ozone over the twenty-first century. We show in a series of idealized box model simulations, with two different chemical schemes, that changes in temperature lead to diverging responses between the schemes. This points at the chemical mechanisms as being a source of uncertainty in the response of ozone to changes in temperature, and so climate, in the future. This underscores the need for more work to be performed to better understand the response of ozone to changes in temperature and constrain how well this relationship is simulated in models. This article is part of a discussion meeting issue 'Air quality, past present and future'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA