Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Sci ; 111(5): 1631-1644, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32086986

RESUMO

Tumor angiogenesis is an important therapeutic target in colorectal cancer (CRC). We aimed to identify novel genes associated with angiogenesis in CRC. Using RNA sequencing analysis in normal and tumor endothelial cells (TECs) isolated from primary CRC tissues, we detected frequent upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in TECs. Immunohistochemical analysis revealed that AEBP1 is upregulated in TECs and stromal cells in CRC tissues. Quantitative RT-PCR analysis showed that there is little or no AEBP1 expression in CRC cell lines, but that AEBP1 is well expressed in vascular endothelial cells. Levels of AEBP1 expression in Human umbilical vein endothelial cells (HUVECs) were upregulated by tumor conditioned medium derived from CRC cells or by direct coculture with CRC cells. Knockdown of AEBP1 suppressed proliferation, migration, and in vitro tube formation by HUVECs. In xenograft experiments, AEBP1 knockdown suppressed tumorigenesis and microvessel formation. Depletion of AEBP1 in HUVECs downregulated a series of genes associated with angiogenesis or endothelial function, including aquaporin 1 (AQP1) and periostin (POSTN), suggesting that AEBP1 might promote angiogenesis through regulation of those genes. These results suggest that upregulation of AEBP1 contributes to tumor angiogenesis in CRC, which makes AEBP1 a potentially useful therapeutic target.


Assuntos
Carboxipeptidases/metabolismo , Neoplasias Colorretais/patologia , Células Endoteliais/metabolismo , Neovascularização Patológica/genética , Proteínas Repressoras/metabolismo , Animais , Carboxipeptidases/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/genética , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Proteínas Repressoras/genética , Células Estromais/metabolismo , Células Estromais/patologia , Regulação para Cima
2.
Pharmacol Res ; 145: 104270, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078742

RESUMO

Decades of research have elucidated the critical role of Akt isoforms in cancer as pro-tumorigenic and metastatic regulators through their specific effects on the cancer cells, tumor endothelial cells and the stromal cells. The pro-cancerous role of Akt isoforms through enhanced cell proliferation and suppression of apoptosis in cancer cells and the cells in the tumor microenvironment is considered a dogma. Intriguingly, studies also indicate that the Akt pathway is essential to protect the endothelial-barrier and prevent aberrant vascular permeability, which is also integral to tumor perfusion and metastasis. To complicate this further, a flurry of recent reports strongly indicates the metastasis suppressive role of Akt, Akt1 in particular in various cancer types. These reports emanated from different laboratories have elegantly demonstrated the paradoxical effect of Akt1 on cancer cell epithelial-to-mesenchymal transition, invasion, tumor endothelial-barrier disruption, and cancer metastasis. Here, we emphasize on the specific role of Akt1 in mediating tumor cell-vasculature reciprocity during the advanced stages of cancers and discuss how Akt1 differentially regulates cancer metastasis through mechanisms distinct from its pro-tumorigenic effects. Since Akt is integral for insulin signaling, endothelial function, and metabolic regulation, we also attempt to shed some light on the specific effects of diabetes in modulating Akt pathway in the promotion of tumor growth and metastasis.


Assuntos
Carcinogênese/metabolismo , Complicações do Diabetes/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Permeabilidade Capilar , Proliferação de Células , Humanos , Neoplasias/patologia , Neovascularização Patológica , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
3.
Biol Pharm Bull ; 42(10): 1609-1619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582649

RESUMO

The vascular system forms the largest surface in our body, serving as a critical interface between blood circulation and our diverse organ/tissue environments. Thus, the vascular system performs a gatekeeper function for organ/tissue homeostasis and the body's adjustment to pathological challenges. The endothelium, as the most inner layer of the vasculature, regulates the tissue microenvironment, which is critical for development, hemostatic balance, inflammation, and angiogenesis, with a role as well in tumor malignancy and metastasis. These multitudinous functions are primarily mediated by organ/tissue-specifically differentiated endothelial cells, in which heterogeneity has long been recognized at the molecular and histological level. Based on these general principles of vascular-bed heterogeneity and characterization, this review largely covers landmark discoveries regarding organ/tissue microenvironment-governed endothelial cell phenotypic changes. These involve the physical features of continuous, discontinuous, fenestrated, and sinusoidal endothelial cells, in addition to the more specialized endothelial cell layers of the lymphatic system, glomerulus, tumors, and the blood brain barrier (BBB). Major signal pathways of endothelial specification are outlined, including Notch as a key factor of tip/stalk- and arterial-endothelial cell differentiation. We also denote the shear stress sensing machinery used to convey blood flow-mediated biophysical forces that are indispensable to maintaining inert and mature endothelial phenotypes. Since our circulatory system is among the most fundamental and emergent targets of study in pharmacology from the viewpoint of drug metabolism and delivery, a better molecular understanding of organ vasculature-bed heterogeneity may lead to better strategies for novel vascular-targeted treatments to fight against hitherto intractable diseases.


Assuntos
Células Endoteliais , Especificidade de Órgãos , Animais , Doença , Endotélio Vascular , Saúde , Humanos
4.
ACS Appl Mater Interfaces ; 16(36): 47075-47088, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39196896

RESUMO

The tumor-vascular interface is a critical component of the tumor microenvironment that regulates all of the dynamic interactions between a growing tumor and the endothelial lining of the surrounding vasculature. In this paper, we report the design and development of a custom-engineered tumor-vascular interface system for investigating the early stage tumor-mediated pro-angiogenic dysfunctional behavior of the endothelium. Using representative endothelial cells and triple negative breast cancer cell lines, we established a biomimetic interface between a three-dimensional tumor tissue across a mature, functional endothelial barrier using a magnetically hybrid-integrated tumor-vascular interface system, wherein vasculature-like features containing a monolayer of endothelial cell culture on porous microfluidic channel surfaces were magnetically attached to tumor spheroids generated on a composite polymer-hydrogel microwell plate and embedded in a collagen matrix. Tumor-mediated endothelial microdynamics were characterized by their hallmark behavior such as loss of endothelial adherens junctions, increased cell density, proliferation, and changes in cell spreading and corroborated with endothelial YAP/TAZ nuclear translocation. We further confirm the feasibility of drug-mediated reversal of this pro-angiogenic endothelial organization through two different signaling mechanisms, namely, inhibition of the vascular endothelial growth factor pathway and the Notch signaling pathway, thereby demonstrating the utility of the tumor-vascular interface platform for rapid, early stage prediction of antiangiogenic drug efficacy. Overall, our work emphasizes the importance of our strategic engineering approach for identifying some unique, physiologically relevant aspects of the tumor-vascular interface, which are otherwise difficult to implement using standard in vitro approaches.


Assuntos
Dispositivos Lab-On-A-Chip , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Microambiente Tumoral/efeitos dos fármacos
5.
Front Cell Dev Biol ; 12: 1387198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726320

RESUMO

Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.

6.
Drug Deliv Transl Res ; 11(6): 2430-2447, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34351575

RESUMO

Immunotherapy has emerged as an unprecedented hope for the treatment of notoriously refractory cancers. Numerous investigational drugs and immunotherapy-including combination regimens are under preclinical and clinical investigation. However, only a small patient subpopulation across different types of cancer responds to the therapy due to the presence of several mechanisms of resistance. There have been extensive efforts to overcome this limitation and to expand the patient population that could be benefited by this state-of-the-art therapeutic modality. Among various causes of the resistance, we here focus on physical stromal barriers that impede the access of immunotherapeutic drug molecules and/or native and engineered immune cells to cancer tissues and cells. Two primary stromal barriers that contribute to the resistance include aberrant tumor vasculatures and excessive extracellular matrix build-ups that restrict extravasation and infiltration, respectively, of molecular and cellular immunotherapeutic agents into tumor tissues. Here, we review the features of these barriers that limit the efficacy of immunotherapy and discuss recent advances that could potentially help immunotherapy overcome the barriers and improve therapeutic outcomes.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/tratamento farmacológico
7.
J Thorac Oncol ; 16(12): 2051-2064, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34311109

RESUMO

INTRODUCTION: Subgroup analyses from clinical studies have suggested that among patients with metastatic NSCLC receiving chemotherapy, females may derive less benefit from the addition of the vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab (BV) than males. This has raised the question of whether estrogen may affect the response to antiangiogenic therapy. METHODS: To address this, we investigated the effects of estrogen on tumor growth, angiogenesis, and the response to BV in human xenograft models of NSCLC. RESULTS: We observed that estrogen induced marked resistance to BV, which was accompanied by a 2.3-fold increase in tumor vascular pericyte coverage (p = 0.01) and an up-regulation of proangiogenic factors, VEGF and platelet-derived growth factor-BB. We also investigated the role of infiltrating myeloid cells, a population that has been associated with resistance to anti-VEGF therapies. We observed that estrogen induced a greater than twofold increase (p = 0.001) in the recruitment of tumor-infiltrating myeloid cells and concomitant increases in the myeloid recruitment factors, G-CSF and CXCL1. Blockade of the estrogen receptor pathway using fulvestrant resensitized tumors to VEGF targeting as evidenced by reduced tumor vasculature and an increase in overall survival in our NSCLC xenograft models. CONCLUSIONS: Collectively, these data provide evidence that estrogen may promote resistance to VEGF-targeted therapies, potentially by enhancing pericyte coverage and myeloid recruitment, and suggest that estrogen receptor blockade merits further investigation as an approach to enhance the effects of antiangiogenic therapy.


Assuntos
Inibidores da Angiogênese , Bevacizumab , Resistencia a Medicamentos Antineoplásicos , Estrogênios/farmacologia , Neoplasias Pulmonares , Inibidores da Angiogênese/farmacologia , Animais , Bevacizumab/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
8.
Oncoimmunology ; 2(9): e25962, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24327938

RESUMO

The tumor microenvironment is a complex assortment of cells that includes a variety of leukocytes. The overall effect of the microenvironment is to support the growth of tumors and suppress immune responses. Immunotherapy is a highly promising form of cancer treatment, but its efficacy can be severely compromised by an immunosuppressive tumor microenvironment. Chemotherapy and radiation treatment can mediate tumor reduction through cytotoxic effects, but it is becoming increasingly clear that these forms of treatment can be used to modify the tumor microenvironment to liberate tumor antigens and decrease immunosuppression. Chemotherapy and radiotherapy can be used to modulate the tumor microenvironment to enhance immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA