Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 174(3): 636-648.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30017246

RESUMO

The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.


Assuntos
Plaquetas/metabolismo , Técnicas de Cultura de Células/métodos , Trombopoese/fisiologia , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Humanos , Hidrodinâmica , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Megacariócitos/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(12): e2302256121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457491

RESUMO

Transition from laminar to turbulent states of classical viscous fluids is complex and incompletely understood. Transition to quantum turbulence (QT), by which we mean the turbulent motion of quantum fluids such as helium II, whose physical properties depend on quantum physics in some crucial respects, is naturally more complex. This increased complexity arises from superfluidity, quantization of circulation, and, at finite temperatures below the critical, the two-fluid behavior. Transition to QT could involve, as an initial step, the transition of the classical component, or the intrinsic or extrinsic nucleation of quantized vortices in the superfluid component, or a simultaneous occurrence of both scenarios-and the subsequent interconnected evolution. In spite of the multiplicity of scenarios, aspects of transition to QT can be understood at a phenomenological level on the basis of some general principles, and compared meaningfully with transition in classical flows.

3.
Proc Natl Acad Sci U S A ; 121(38): e2405459121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39259588

RESUMO

Small bubbles in fluids rise to the surface due to Archimede's force. Remarkably, in turbulent flows this process is severely hindered by the presence of vortex filaments, which act as moving potential wells, dynamically trapping light particles and bubbles. Quantifying the statistical weights and roles of vortex filaments in turbulence is, however, still an outstanding experimental and computational challenge due to their small scale, fast chaotic motion, and transient nature. Here we show that, under the influence of a modulated oscillatory forcing, the collective bubble behavior switches from a dynamically localized to a delocalized state. Additionally, we find that by varying the forcing frequency and amplitude, a remarkable resonant phenomenon between light particles and small-scale vortex filaments emerges, likening particle behavior to a forced damped oscillator. We discuss how these externally actuated bubbles can be used as a type of microscopic probe to investigate the space-time statistical properties of the smallest turbulence scales, allowing to quantitatively measure physical characteristics of vortex filaments. We develop a superposition model that is in excellent agreement with the simulation data of the particle dynamics which reveals the fraction of localized/delocalized particles as well as characteristics of the potential landscape induced by vortices in turbulence. Our approach paves the way for innovative ways to accurately measure turbulent properties and to the possibility to control light particles and bubble motions in turbulence with potential applications to oceanography, medical imaging, drug/gene delivery, chemical reactions, wastewater treatment, and industrial mixing.

4.
Proc Natl Acad Sci U S A ; 121(23): e2320007121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38820003

RESUMO

A dynamical systems approach to turbulence envisions the flow as a trajectory through a high-dimensional state space [Hopf, Commun. Appl. Maths 1, 303 (1948)]. The chaotic dynamics are shaped by the unstable simple invariant solutions populating the inertial manifold. The hope has been to turn this picture into a predictive framework where the statistics of the flow follow from a weighted sum of the statistics of each simple invariant solution. Two outstanding obstacles have prevented this goal from being achieved: 1) paucity of known solutions and 2) the lack of a rational theory for predicting the required weights. Here, we describe a method to substantially solve these problems, and thereby provide compelling evidence that the probability density functions (PDFs) of a fully developed turbulent flow can be reconstructed with a set of unstable periodic orbits. Our method for finding solutions uses automatic differentiation, with high-quality guesses constructed by minimizing a trajectory-dependent loss function. We use this approach to find hundreds of solutions in turbulent, two-dimensional Kolmogorov flow. Robust statistical predictions are then computed by learning weights after converting a turbulent trajectory into a Markov chain for which the states are individual solutions, and the nearest solution to a given snapshot is determined using a deep convolutional autoencoder. In this study, the PDFs of a spatiotemporally chaotic system have been successfully reproduced with a set of simple invariant states, and we provide a fascinating connection between self-sustaining dynamical processes and the more well-known statistical properties of turbulence.

5.
Proc Natl Acad Sci U S A ; 121(24): e2320719121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38848299

RESUMO

We demonstrate that the complex spatiotemporal structure in active fluids can feature characteristics of hyperuniformity. Using a hydrodynamic model, we show that the transition from hyperuniformity to nonhyperuniformity and antihyperuniformity depends on the strength of active forcing and can be related to features of active turbulence without and with scaling characteristics of inertial turbulence. Combined with identified signatures of Levy walks and nonuniversal diffusion in these systems, this allows for a biological interpretation and the speculation of nonequilibrium hyperuniform states in active fluids as optimal states with respect to robustness and strategies of evasion and foraging.

6.
Proc Natl Acad Sci U S A ; 121(11): e2311798121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442164

RESUMO

An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.

7.
Proc Natl Acad Sci U S A ; 121(25): e2320704121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857389

RESUMO

We present experimental evidence of a thermoelectric effect at the interface between two liquid metals. Using superimposed layers of mercury and gallium in a cylindrical vessel operating at room temperature, we provide a direct measurement of the electric current generated by the presence of a thermal gradient along a liquid-liquid interface. At the interface between two liquids, temperature gradients induced by thermal convection lead to a complex geometry of electric currents, ultimately generating current densities near boundaries that are significantly higher than those observed in conventional solid-state thermoelectricity. When a magnetic field is applied to the experiment, an azimuthal shear flow, exhibiting opposite circulation in each layer, is generated. Depending on the value of the magnetic field, two different flow regimes are identified, in good agreement with a model based on the spatial distribution of thermoelectric currents, which has no equivalent in solid systems. Finally, we discuss various applications of this effect, such as the efficiency of liquid metal batteries.

8.
Proc Natl Acad Sci U S A ; 121(9): e2318851121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377197

RESUMO

Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external flow, dilute polymer solutions exhibit elastic turbulence-a unique, chaotic flow state absent in Newtonian fluids, like water. Unlike its Newtonian counterpart, elastic turbulence is caused by polymer molecules stretching and aligning in the flow, and can occur at vanishing inertia. While experimental realizations of elastic turbulence are well-documented, there is currently no understanding of its mechanism. Here, we present large-scale direct numerical simulations of elastic turbulence in pressure-driven flows through straight channels. We demonstrate that the transition to elastic turbulence is sub-critical, giving rise to spot-like flow structures that, further away from the transition, eventually spread throughout the domain. We provide evidence that elastic turbulence is organized around unstable coherent states that are localized close to the channel midplane.

9.
Proc Natl Acad Sci U S A ; 121(27): e2319664121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917003

RESUMO

Rain formation is a critical factor governing the lifecycle and radiative forcing of clouds and therefore it is a key element of weather and climate. Cloud microphysics-turbulence interactions occur across a wide range of scales and are challenging to represent in atmospheric models with limited resolution. Based on past experiments and idealized numerical simulations, it has been postulated that cloud turbulence accelerates rain formation by enhancing drop collision-coalescence. We provide substantial evidence for significant impacts of turbulence on the evolution of cloud droplet size distributions and rain formation by comparing high-resolution observations of cumulus congestus clouds with state-of-the-art large-eddy simulations coupled with a Lagrangian particle-based microphysics scheme. Turbulent coalescence must be included in the model to accurately represent the observed drop size distributions, especially for drizzle drop sizes at lower heights in the cloud. Turbulence causes earlier rain formation and greater rain accumulation compared to simulations with gravitational coalescence only. The observed rain size distribution tail just above cloud base follows a power law scaling that deviates from theoretical scalings considering either a purely gravitation collision kernel or a turbulent kernel neglecting droplet inertial effects, providing additional evidence for turbulent coalescence in clouds. In contrast, large aerosols acting as cloud condensation nuclei ("giant CCN") do not significantly impact rain formation owing to their long timescale to reach equilibrium wet size relative to the lifetime of rising cumulus thermals. Overall, turbulent drop coalescence exerts a dominant influence on rain initiation in warm cumulus clouds, with limited impacts of giant CCN.

10.
Proc Natl Acad Sci U S A ; 121(35): e2405351121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159373

RESUMO

Matter entanglement is a common chaotic structure found in both quantum and classical systems. For classical turbulence, viscous vortices are like sinews in fluid flows, storing and dissipating energy and accommodating strain and stress throughout a complex vortex network. However, to explain how the statistical properties of turbulence arise from elemental vortical structures remains challenging. Here, we use the quantum vortex tangle as a skeleton to generate an instantaneous classical turbulent field with intertwined vortex tubes. Combining the quantum skeleton and tunable vortex thickness makes the synthetic turbulence satisfy key statistical laws, offering valuable insights for elucidating energy cascade and extreme events. By manipulating the elemental structures, we customize turbulence with desired statistical features. This bottom-up approach of designing turbulence provides a testbed for analyzing and modeling turbulence.

11.
Proc Natl Acad Sci U S A ; 121(30): e2404828121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024112

RESUMO

Recent progress in out-of-equilibrium closed quantum systems has significantly advanced the understanding of mechanisms behind their evolution toward thermalization. Notably, the concept of nonthermal fixed points (NTFPs)-responsible for the emergence of spatiotemporal universal scaling in far-from-equilibrium systems-has played a crucial role in both theoretical and experimental investigations. In this work, we introduce a differential equation that has the universal scaling associated with NTFPs as a solution. The advantage of working with a differential equation, rather than only with its solution, is that we can extract several insightful properties not necessarily present in the solution alone. How the differential equation is derived allows physical interpretation of the universal exponents in terms of the time dependence of the amplitude of the distributions and their momentum scaling. Employing two limiting cases of the equation, we determined the universal exponents related to the scaling using the distributions near just two momentum values. We established a solid agreement with previous investigations by validating this approach with three distinct physical systems. This consistency highlights the universal nature of scaling due to NTFPs and emphasizes the predictive capabilities of the proposed differential equation. Moreover, under specific conditions, the equation predicts a power-law related to the ratio of the two universal exponents, leading to implications concerning particle and energy transport. This suggests that the observed power-laws in far-from-equilibrium turbulent fluids could be related to the universal scaling due to NTFPs, potentially offering insights into the study of turbulence.

12.
Proc Natl Acad Sci U S A ; 121(13): e2320216121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507446

RESUMO

The structure and intensity of turbulence in the atmospheric boundary layer (ABL) drive fluxes of sediment, contaminants, heat, moisture, and CO[Formula: see text] at the Earth's surface. Where ABL flows encounter changes in roughness-such as cities, wind farms, forest canopies, and landforms-a new mesoscopic flow scale is introduced: the internal boundary layer (IBL), which represents a near-bed region of transient flow adjustment that develops over kilometers. Measurement of this new mesoscopic scale lies outside present observational capabilities of ABL flows, and simplified models fail to capture the sensitive dependence of turbulence on roughness geometry. Here, we use large-eddy simulations, run over high-resolution topographic data and validated against field observations, to examine the structure of the ABL across a natural roughness transition: the emergent sand dunes at White Sands National Park. We observe that development of the IBL is triggered by the abrupt transition from smooth playa surface to dunes; however, continuous changes in the size and spacing of dunes over several kilometers influence the downwind patterns of boundary stress and near-bed turbulence. Coherent flow structures grow and merge over the entire [Formula: see text]10 km distance of the dune field and modulate the influence of large-scale atmospheric turbulence on the bed. Simulated boundary stresses in the developing IBL counter existing expectations and explain the observed downwind decrease in dune migration, demonstrating a mesoscale coupling between flow and form that governs landscape dynamics. More broadly, our findings demonstrate the importance of resolving both turbulence and realistic roughness for understanding fluid-boundary interactions in environmental flows.

13.
Proc Natl Acad Sci U S A ; 121(13): e2316912121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502698

RESUMO

Multi-principal element alloys (MPEAs) exhibit outstanding strength attributed to the complex dislocation dynamics as compared to conventional alloys. Here, we develop an atomic-lattice-distortion-dependent discrete dislocation dynamics framework consisted of random field theory and phenomenological dislocation model to investigate the fundamental deformation mechanism underlying massive dislocation motions in body-centered cubic MPEA. Amazingly, the turbulence of dislocation speed is identified in light of strong heterogeneous lattice strain field caused by short-range ordering. Importantly, the vortex from dislocation flow turbulence not only acts as an effective source to initiate dislocation multiplication but also induces the strong local pinning trap to block dislocation movement, thus breaking the strength-ductility trade-off.

14.
Proc Natl Acad Sci U S A ; 120(30): e2305765120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467268

RESUMO

Turbulence in fluid flows is characterized by a wide range of interacting scales. Since the scale range increases as some power of the flow Reynolds number, a faithful simulation of the entire scale range is prohibitively expensive at high Reynolds numbers. The most expensive aspect concerns the small-scale motions; thus, major emphasis is placed on understanding and modeling them, taking advantage of their putative universality. In this work, using physics-informed deep learning methods, we present a modeling framework to capture and predict the small-scale dynamics of turbulence, via the velocity gradient tensor. The model is based on obtaining functional closures for the pressure Hessian and viscous Laplacian contributions as functions of velocity gradient tensor. This task is accomplished using deep neural networks that are consistent with physical constraints and explicitly incorporate Reynolds number dependence to account for small-scale intermittency. We then utilize a massive direct numerical simulation database, spanning two orders of magnitude in the large-scale Reynolds number, for training and validation. The model learns from low to moderate Reynolds numbers and successfully predicts velocity gradient statistics at both seen and higher (unseen) Reynolds numbers. The success of our present approach demonstrates the viability of deep learning over traditional modeling approaches in capturing and predicting small-scale features of turbulence.

15.
Proc Natl Acad Sci U S A ; 120(44): e2308018120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871203

RESUMO

The evolution of unforced and weakly damped two-dimensional turbulence over random rough topography presents two extreme states. If the initial kinetic energy [Formula: see text] is sufficiently high, then the topography is a weak perturbation, and evolution is determined by the spontaneous formation and mutual interaction of coherent axisymmetric vortices. High-energy vortices roam throughout the domain and mix the background potential vorticity (PV) to homogeneity, i.e., in the region between vortices, which is most of the domain, the relative vorticity largely cancels the topographic PV. If [Formula: see text] is low, then vortices still form but they soon become locked to topographic features: Anticyclones sit above topographic depressions and cyclones above elevated regions. In the low-energy case, with topographically locked vortices, the background PV retains some spatial variation. We develop a unified framework of topographic turbulence spanning these two extreme states of low and high energy. A main organizing concept is that PV homogenization demands a particular kinetic energy level [Formula: see text]. [Formula: see text] is the separator between high-energy evolution and low-energy evolution.

16.
Proc Natl Acad Sci U S A ; 120(23): e2220927120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252951

RESUMO

We report analytical and numerical investigations of subion-scale turbulence in low-beta plasmas using a rigorous reduced kinetic model. We show that efficient electron heating occurs and is primarily due to Landau damping of kinetic Alfvén waves, as opposed to Ohmic dissipation. This collisionless damping is facilitated by the local weakening of advective nonlinearities and the ensuing unimpeded phase mixing near intermittent current sheets, where free energy concentrates. The linearly damped energy of electromagnetic fluctuations at each scale explains the steepening of their energy spectrum with respect to a fluid model where such damping is excluded (i.e., a model that imposes an isothermal electron closure). The use of a Hermite polynomial representation to express the velocity-space dependence of the electron distribution function enables us to obtain an analytical, lowest-order solution for the Hermite moments of the distribution, which is borne out by numerical simulations.

17.
Proc Natl Acad Sci U S A ; 120(34): e2213638120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585463

RESUMO

High-Reynolds number homogeneous isotropic turbulence (HIT) is fully described within the Navier-Stokes (NS) equations, which are notoriously difficult to solve numerically. Engineers, interested primarily in describing turbulence at a reduced range of resolved scales, have designed heuristics, known as large eddy simulation (LES). LES is described in terms of the temporally evolving Eulerian velocity field defined over a spatial grid with the mean-spacing correspondent to the resolved scale. This classic Eulerian LES depends on assumptions about effects of subgrid scales on the resolved scales. Here, we take an alternative approach and design LES heuristics stated in terms of Lagrangian particles moving with the flow. Our Lagrangian LES, thus L-LES, is described by equations generalizing the weakly compressible smoothed particle hydrodynamics formulation with extended parametric and functional freedom, which is then resolved via Machine Learning training on Lagrangian data from direct numerical simulations of the NS equations. The L-LES model includes physics-informed parameterization and functional form, by combining physics-based parameters and physics-inspired Neural Networks to describe the evolution of turbulence within the resolved range of scales. The subgrid-scale contributions are modeled separately with physical constraints to account for the effects from unresolved scales. We build the resulting model under the differentiable programming framework to facilitate efficient training. We experiment with loss functions of different types, including physics-informed ones accounting for statistics of Lagrangian particles. We show that our L-LES model is capable of reproducing Eulerian and unique Lagrangian turbulence structures and statistics over a range of turbulent Mach numbers.

18.
Proc Natl Acad Sci U S A ; 120(28): e2305595120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399407

RESUMO

Inertia-less viscoelastic channel flow displays a supercritical nonnormal mode elastic instability due to finite-size perturbations despite its linear stability. The nonnormal mode instability is determined mainly by a direct transition from laminar to chaotic flow, in contrast to normal mode bifurcation leading to a single fastest-growing mode. At higher velocities, transitions to elastic turbulence and further drag reduction flow regimes occur accompanied by elastic waves in three flow regimes. Here, we demonstrate experimentally that the elastic waves play a key role in amplifying wall-normal vorticity fluctuations by pumping energy, withdrawn from the mean flow, into wall-normal fluctuating vortices. Indeed, the flow resistance and rotational part of the wall-normal vorticity fluctuations depend linearly on the elastic wave energy in three chaotic flow regimes. The higher (lower) the elastic wave intensity, the larger (smaller) the flow resistance and rotational vorticity fluctuations. This mechanism was suggested earlier to explain elastically driven Kelvin-Helmholtz-like instability in viscoelastic channel flow. The suggested physical mechanism of vorticity amplification by the elastic waves above the elastic instability onset recalls the Landau damping in magnetized relativistic plasma. The latter occurs due to the resonant interaction of electromagnetic waves with fast electrons in the relativistic plasma when the electron velocity approaches light speed. Moreover, the suggested mechanism could be generally relevant to flows exhibiting both transverse waves and vortices, such as Alfven waves interacting with vortices in turbulent magnetized plasma, and Tollmien-Schlichting waves amplifying vorticity in both Newtonian and elasto-inertial fluids in shear flows.

19.
Proc Natl Acad Sci U S A ; 119(34): e2120665119, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35984901

RESUMO

Despite a long and rich history of scientific investigation, fluid turbulence remains one of the most challenging problems in science and engineering. One of the key outstanding questions concerns the role of coherent structures that describe frequently observed patterns embedded in turbulence. It has been suggested, but not proved, that coherent structures correspond to unstable, recurrent solutions of the governing equation of fluid dynamics. Here, we present experimental and numerical evidence that three-dimensional turbulent flow tracks, episodically but repeatedly, the spatial and temporal structure of multiple such solutions. Our results provide compelling evidence that coherent structures, grounded in the governing equations, can be harnessed to predict how turbulent flows evolve.

20.
Proc Natl Acad Sci U S A ; 119(17): e2120486119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35442776

RESUMO

Vortex crystals are quasiregular arrays of like-signed vortices in solid-body rotation embedded within a uniform background of weaker vorticity. Vortex crystals are observed at the poles of Jupiter and in laboratory experiments with magnetized electron plasmas in axisymmetric geometries. We show that vortex crystals form from the free evolution of randomly excited two-dimensional turbulence on an idealized polar cap. Once formed, the crystals are long lived and survive until the end of the simulations (300 crystal-rotation periods). We identify a fundamental length scale, Lγ=(U/γ)1/3, characterizing the size of the crystal in terms of the mean-square velocity U of the fluid and the polar parameter γ=fp/a2p, with fp the Coriolis parameter at the pole and ap the polar radius of the planet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA