Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.582
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026411

RESUMO

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Animais , Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Homeostase , Humanos , Tolerância Imunológica , Imunomodulação , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia
2.
Cell ; 184(3): 840-843, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545037

RESUMO

We have recently identified a novel lymphocyte that is a dual expresser (DE) of TCRαß and BCR. DEs in T1D patients are predominated by a public BCR clonotype (clone-x) that encodes a potent autoantigen that cross-activates insulin-reactive T cells. Betts and colleagues were able to detect DEs but alleged to not detect high DE frequency, clone-x, or similar clones in T1D patients. Unfortunately, the authors did not follow our methods and when they did, their flow cytometric data at two sites were conflicting. Moreover, contrary to their claim, we identified clones similar to clone-x in their data along with clones bearing the core motif (DTAMVYYFDYW). Additionally, their report of no increased usage of clone-x VH/DH genes by bulk B cells confirms rather than challenges our results. Finally, the authors failed to provide data verifying purity of their sorted DEs, making it difficult to draw reliable conclusion of their repertoire analysis. This Matters Arising Response paper addresses the Japp et al. (2021) Matters Arising paper, published concurrently in Cell.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos B , Células Clonais , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T
3.
Cell ; 184(3): 827-839.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545036

RESUMO

Ahmed and colleagues recently described a novel hybrid lymphocyte expressing both a B and T cell receptor, termed double expresser (DE) cells. DE cells in blood of type 1 diabetes (T1D) subjects were present at increased numbers and enriched for a public B cell clonotype. Here, we attempted to reproduce these findings. While we could identify DE cells by flow cytometry, we found no association between DE cell frequency and T1D status. We were unable to identify the reported public B cell clone, or any similar clone, in bulk B cells or sorted DE cells from T1D subjects or controls. We also did not observe increased usage of the public clone VH or DH genes in B cells or in sorted DE cells. Taken together, our findings suggest that DE cells and their alleged public clonotype are not enriched in T1D. This Matters Arising paper is in response to Ahmed et al. (2019), published in Cell. See also the response by Ahmed et al. (2021), published in this issue.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos B , Células Clonais , Diabetes Mellitus Tipo 1/genética , Citometria de Fluxo , Humanos , Receptores de Antígenos de Linfócitos T
4.
Cell ; 177(6): 1583-1599.e16, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150624

RESUMO

T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Adolescente , Adulto , Autoantígenos/imunologia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/metabolismo , Epitopos/imunologia , Feminino , Células HEK293 , Antígenos HLA-DQ/imunologia , Antígenos HLA-DQ/ultraestrutura , Humanos , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Peptídeos , Ligação Proteica/imunologia
5.
Immunity ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39396521

RESUMO

Self-reactive T cells experience chronic antigen exposure but do not exhibit signs of exhaustion. Here, we investigated the mechanisms for sustained, functioning autoimmune CD4+ T cells despite chronic stimulation. Examination of T cell priming showed that CD4+ T cells activated in the absence of infectious signals retained TCF1 expression. At later time points and during blockade of new T cell recruitment, most islet-infiltrating autoimmune CD4+ T cells were TCF1+, although expression was reduced on a per T cell basis. The Tcf7 locus was epigenetically modified in circulating autoimmune CD4+ T cells, suggesting a pre-programmed de novo methylation of the locus in early stages of autoimmune CD4+ T cell differentiation. This mirrored the epigenetic profile of recently recruited CD4+CD62L+ T cells in the pancreas. Collectively, these data reveal a unique environment during autoimmune CD4+ T cell priming that allows T cells to fine-tune TCF1 expression and maintain long-term survival and function.

6.
Immunity ; 57(7): 1629-1647.e8, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38754432

RESUMO

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Diferenciação Celular , Quimiocina CXCL16 , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Lipoproteínas LDL , Macrófagos , Camundongos Endogâmicos NOD , Camundongos Knockout , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Quimiocina CXCL16/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL
7.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37557168

RESUMO

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Assuntos
Autoimunidade , Pâncreas , Camundongos , Animais , Pâncreas/patologia , Fígado , Linfócitos T , Linfonodos
8.
Immunity ; 55(5): 912-924.e8, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35413245

RESUMO

Lymphocyte activation gene-3 (LAG-3) is a potent inhibitory co-receptor; yet, its functional ligand remains elusive, with distinct potential ligands identified. Here, we investigated the relative contribution of potential ligands, stable peptide-MHC class II complexes (pMHCII) and fibrinogen-like protein 1 (FGL1), to LAG-3 activity in vitro and in vivo. Binding of LAG-3 to stable pMHCII but not to FGL1 induced T cell suppression in vitro. Consistently, LAG-3 mutants lacking FGL1-binding capacity but not those lacking stable pMHCII-binding capacity retained suppressive activity in vitro. Accordingly, targeted disruption of stable pMHCII- but not FGL1-binding capacity of LAG-3 in NOD mice recapitulated diabetes exacerbation by LAG-3 deficiency. Additionally, the loss of stable pMHCII-binding capacity of LAG-3 augmented anti-cancer immunity comparably with LAG-3 deficiency in C57BL/6 mice. These results identify stable pMHCII as a functional ligand of LAG-3 both in autoimmunity and anti-cancer immunity. Thus, stable pMHCII-LAG-3 interaction is a potential therapeutic target in human diseases.


Assuntos
Antígenos CD , Autoimunidade , Antígenos de Histocompatibilidade Classe II , Neoplasias , Linfócitos T , Animais , Antígenos CD/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Neoplasias/imunologia , Peptídeos/metabolismo , Linfócitos T/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
9.
Immunity ; 52(5): 872-884.e5, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433950

RESUMO

Some endocrine organs are frequent targets of autoimmune attack. Here, we addressed the origin of autoimmune disease from the viewpoint of feedback control. Endocrine tissues maintain mass through feedback loops that balance cell proliferation and removal according to hormone-driven regulatory signals. We hypothesized the existence of a dedicated mechanism that detects and removes mutant cells that missense the signal and therefore hyperproliferate and hypersecrete with potential to disrupt organismal homeostasis. In this mechanism, hypersecreting cells are preferentially eliminated by autoreactive T cells at the cost of a fragility to autoimmune disease. The "autoimmune surveillance of hypersecreting mutants" (ASHM) hypothesis predicts the presence of autoreactive T cells in healthy individuals and the nature of self-antigens as peptides from hormone secretion pathway. It explains why some tissues get prevalent autoimmune disease, whereas others do not and instead show prevalent mutant-expansion disease (e.g., hyperparathyroidism). The ASHM hypothesis is testable, and we discuss experimental follow-up.


Assuntos
Doenças Autoimunes/imunologia , Diabetes Mellitus Tipo 1/imunologia , Glândulas Endócrinas/imunologia , Sistema Endócrino/imunologia , Vigilância Imunológica/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Glândulas Endócrinas/citologia , Glândulas Endócrinas/metabolismo , Sistema Endócrino/citologia , Sistema Endócrino/metabolismo , Feminino , Humanos , Vigilância Imunológica/genética , Masculino , Mutação , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
Immunity ; 52(2): 257-274.e11, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32049053

RESUMO

Genetics is a major determinant of susceptibility to autoimmune disorders. Here, we examined whether genome organization provides resilience or susceptibility to sequence variations, and how this would contribute to the molecular etiology of an autoimmune disease. We generated high-resolution maps of linear and 3D genome organization in thymocytes of NOD mice, a model of type 1 diabetes (T1D), and the diabetes-resistant C57BL/6 mice. Multi-enhancer interactions formed at genomic regions harboring genes with prominent roles in T cell development in both strains. However, diabetes risk-conferring loci coalesced enhancers and promoters in NOD, but not C57BL/6 thymocytes. 3D genome mapping of NODxC57BL/6 F1 thymocytes revealed that genomic misfolding in NOD mice is mediated in cis. Moreover, immune cells infiltrating the pancreas of humans with T1D exhibited increased expression of genes located on misfolded loci in mice. Thus, genetic variation leads to altered 3D chromatin architecture and associated changes in gene expression that may underlie autoimmune pathology.


Assuntos
Cromatina/metabolismo , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença/genética , Timócitos/patologia , Animais , Fator de Ligação a CCCTC/metabolismo , Mapeamento Cromossômico , Diabetes Mellitus Tipo 1/patologia , Epigênese Genética , Expressão Gênica , Loci Gênicos/genética , Variação Genética , Genoma/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pâncreas/patologia , Sequências Reguladoras de Ácido Nucleico
11.
Immunol Rev ; 325(1): 46-63, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38752578

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1 , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 1/terapia , Humanos , Animais , Microbioma Gastrointestinal/imunologia , Camundongos
12.
Immunol Rev ; 325(1): 23-45, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166298

RESUMO

Type 1 diabetes (T1D) results from a complex interplay of genetic predisposition, immunological dysregulation, and environmental triggers, that culminate in the destruction of insulin-secreting pancreatic ß cells. This review provides a comprehensive examination of the multiple factors underpinning T1D pathogenesis, to elucidate key mechanisms and potential therapeutic targets. Beginning with an exploration of genetic risk factors, we dissect the roles of human leukocyte antigen (HLA) haplotypes and non-HLA gene variants associated with T1D susceptibility. Mechanistic insights gleaned from the NOD mouse model provide valuable parallels to the human disease, particularly immunological intricacies underlying ß cell-directed autoimmunity. Immunological drivers of T1D pathogenesis are examined, highlighting the pivotal contributions of both effector and regulatory T cells and the multiple functions of B cells and autoantibodies in ß-cell destruction. Furthermore, the impact of environmental risk factors, notably modulation of host immune development by the intestinal microbiome, is examined. Lastly, the review probes human longitudinal studies, unveiling the dynamic interplay between mucosal immunity, systemic antimicrobial antibody responses, and the trajectories of T1D development. Insights garnered from these interconnected factors pave the way for targeted interventions and the identification of biomarkers to enhance T1D management and prevention strategies.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Predisposição Genética para Doença , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/genética , Humanos , Animais , Microbioma Gastrointestinal/imunologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Interação Gene-Ambiente , Autoanticorpos/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Camundongos , Modelos Animais de Doenças , Fatores de Risco
13.
Semin Immunol ; 66: 101730, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36827760

RESUMO

In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/terapia , Peptídeos , Linfócitos T , Espectrometria de Massas
14.
Proc Natl Acad Sci U S A ; 121(6): e2315419121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285952

RESUMO

Persistent antigen exposure results in the differentiation of functionally impaired, also termed exhausted, T cells which are maintained by a distinct population of precursors of exhausted T (TPEX) cells. T cell exhaustion is well studied in the context of chronic viral infections and cancer, but it is unclear whether and how antigen-driven T cell exhaustion controls progression of autoimmune diabetes and whether this process can be harnessed to prevent diabetes. Using nonobese diabetic (NOD) mice, we show that some CD8+ T cells specific for the islet antigen, islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) displayed terminal exhaustion characteristics within pancreatic islets but were maintained in the TPEX cell state in peripheral lymphoid organs (PLO). More IGRP-specific T cells resided in the PLO than in islets. To examine the impact of extraislet antigen exposure on T cell exhaustion in diabetes, we generated transgenic NOD mice with inducible IGRP expression in peripheral antigen-presenting cells. Antigen exposure in the extraislet environment induced severely exhausted IGRP-specific T cells with reduced ability to produce interferon (IFN)γ, which protected these mice from diabetes. Our data demonstrate that T cell exhaustion induced by delivery of antigen can be harnessed to prevent autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Proteínas/metabolismo , Exaustão das Células T , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos NOD , Ilhotas Pancreáticas/metabolismo , Linfócitos T CD8-Positivos
15.
Proc Natl Acad Sci U S A ; 121(16): e2320883121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598342

RESUMO

Differentiation of pancreatic endocrine cells from human pluripotent stem cells (PSCs) has been thoroughly investigated for application in cell therapy against diabetes. In the context of induced pancreatic endocrine cell implantation, previous studies have reported graft enlargement resulting from off-target pancreatic lineage cells. However, there is currently no documented evidence of proliferative off-target cells beyond the pancreatic lineage in existing studies. Here, we show that the implantation of seven-stage induced PSC-derived pancreatic islet cells (s7-iPICs) leads to the emergence of unexpected off-target cells with proliferative capacity via in vivo maturation. These cells display characteristics of both mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs), termed proliferative MSC- and SMC-like cells (PMSCs). The frequency of PMSC emergence was found to be high when 108 s7-iPICs were used. Given that clinical applications involve the use of a greater number of induced cells than 108, it is challenging to ensure the safety of clinical applications unless PMSCs are adequately addressed. Accordingly, we developed a detection system and removal methods for PMSCs. To detect PMSCs without implantation, we implemented a 4-wk-extended culture system and demonstrated that putative PMSCs could be reduced by compound treatment, particularly with the taxane docetaxel. When docetaxel-treated s7-iPICs were implanted, the PMSCs were no longer observed. This study provides useful insights into the identification and resolution of safety issues, which are particularly important in the field of cell-based medicine using PSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ilhotas Pancreáticas , Humanos , Docetaxel , Diferenciação Celular , Implantação do Embrião
16.
Immunol Rev ; 318(1): 81-88, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493210

RESUMO

Immune checkpoint inhibitor therapies act through blockade of inhibitory molecules involved in the regulation of T cells, thus releasing tumor specific T cells to destroy their tumor targets. However, immune checkpoint inhibitors (ICI) can also lead to a breach in self-tolerance resulting in immune-related adverse events (irAEs) that include tissue-specific autoimmunity. This review addresses the question of whether the mechanisms that drive ICI-induced irAEs are shared or distinct with those driving spontaneous autoimmunity, focusing on ICI-induced diabetes, ICI-induced arthritis, and ICI-induced thyroiditis due to the wealth of knowledge about the development of autoimmunity in type 1 diabetes, rheumatoid arthritis, and Hashimoto's thyroiditis. It reviews current knowledge about role of genetics and autoantibodies in the development of ICI-induced irAEs and presents new studies utilizing single-cell omics approaches to identify T-cell signatures associated with ICI-induced irAEs. Collectively, these studies indicate that there are similarities and differences between ICI-induced irAEs and autoimmune disease and that studying them in parallel will provide important insight into the mechanisms critical for maintaining immune tolerance.


Assuntos
Autoimunidade , Neoplasias , Humanos , Imunoterapia/métodos , Autoanticorpos , Linfócitos T
17.
Hum Mol Genet ; 33(11): 958-968, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453145

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of the pancreatic ß-cells. Genome-wide association (GWAS) and fine mapping studies have been conducted mainly in European ancestry (EUR) populations. We performed a multi-ancestry GWAS to identify SNPs and HLA alleles associated with T1D risk and age at onset. EUR families (N = 3223), and unrelated individuals of African (AFR, N = 891) and admixed (Hispanic/Latino) ancestry (AMR, N = 308) were genotyped using the Illumina HumanCoreExome BeadArray, with imputation to the TOPMed reference panel. The Multi-Ethnic HLA reference panel was utilized to impute HLA alleles and amino acid residues. Logistic mixed models (T1D risk) and frailty models (age at onset) were used for analysis. In GWAS meta-analysis, seven loci were associated with T1D risk at genome-wide significance: PTPN22, HLA-DQA1, IL2RA, RNLS, INS, IKZF4-RPS26-ERBB3, and SH2B3, with four associated with T1D age at onset (PTPN22, HLA-DQB1, INS, and ERBB3). AFR and AMR meta-analysis revealed NRP1 as associated with T1D risk and age at onset, although NRP1 variants were not associated in EUR ancestry. In contrast, the PTPN22 variant was significantly associated with risk only in EUR ancestry. HLA alleles and haplotypes most significantly associated with T1D risk in AFR and AMR ancestry differed from that seen in EUR ancestry; in addition, the HLA-DRB1*08:02-DQA1*04:01-DQB1*04:02 haplotype was 'protective' in AMR while HLA-DRB1*08:01-DQA1*04:01-DQB1*04:02 haplotype was 'risk' in EUR ancestry, differing only at HLA-DRB1*08. These results suggest that much larger sample sizes in non-EUR populations are required to capture novel loci associated with T1D risk.


Assuntos
Diabetes Mellitus Tipo 1 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Diabetes Mellitus Tipo 1/genética , Masculino , Feminino , População Branca/genética , Idade de Início , Alelos , Cadeias alfa de HLA-DQ/genética , População Negra/genética , Criança , Hispânico ou Latino/genética , Antígenos HLA/genética , Adolescente
18.
Proc Natl Acad Sci U S A ; 120(49): e2312039120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015847

RESUMO

In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vß3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vß3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vß3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vß repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos , Camundongos Endogâmicos NOD , Vírus do Tumor Mamário do Camundongo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD4-Positivos , Camundongos Transgênicos
19.
Proc Natl Acad Sci U S A ; 120(13): e2219956120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940342

RESUMO

The events that initiate autoimmune diabetes in nonobese diabetic (NOD) mice remain poorly understood. CD4+ and CD8+ T cells are both required to develop disease, but their relative roles in initiating disease are unclear. To test whether CD4+ T cell infiltration into islets requires damage to ß cells induced by autoreactive CD8+ T cells, we inactivated Wdfy4 in nonobese diabetic (NOD) mice (NOD.Wdfy4-/--) using CRISPR/Cas9 targeting to eliminate cross-presentation by type 1 conventional dendritic cells (cDC1s). Similar to C57BL/6 Wdfy4-/- mice, cDC1 in NOD.Wdfy4-/- mice are unable to cross-present cell-associated antigens to prime CD8+ T cells, while cDC1 from heterozygous NOD.Wdfy4+/- mice cross-present normally. Further, NOD.Wdfy4-/- mice fail to develop diabetes while heterozygous NOD.Wdfy4+/- mice develop diabetes similarly to wild-type NOD mice. NOD.Wdfy4-/- mice remain capable of processing and presenting major histocompatibility complex class II (MHC-II)-restricted autoantigens and can activate ß cell-specific CD4+ T cells in lymph nodes. However, disease in these mice does not progress beyond peri-islet inflammation. These results indicate that the priming of autoreactive CD8+ T cells in NOD mice requires cross-presentation by cDC1. Further, autoreactive CD8+ T cells appear to be required not only to develop diabetes, but to recruit autoreactive CD4+ T cells into islets of NOD mice, perhaps in response to progressive ß cell damage.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Camundongos Endogâmicos NOD , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe II
20.
Proc Natl Acad Sci U S A ; 120(16): e2214430120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040399

RESUMO

A previously reported autoreactive antigen, termed the X-idiotype, isolated from a unique cell population in Type 1 diabetes (T1D) patients, was found to stimulate their CD4+ T cells. This antigen was previously determined to bind more favorably than insulin and its mimic (insulin superagonist) to HLA-DQ8, supporting its strong role in CD4+ T cell activation. In this work, we probed HLA-X-idiotype-TCR binding and designed enhanced-reactive pHLA-TCR antigens using an in silico mutagenesis approach which we functionally validated by cell proliferation assays and flow cytometry. From a combination of single, double, and swap mutations, we identified antigen-binding sites p4 and p6 as potential mutation sites for HLA binding affinity enhancement. Site p6 is revealed to favor smaller but more hydrophobic residues than the native tyrosine, such as valine (Y6V) and isoleucine (Y6I), indicating a steric mechanism in binding affinity improvement. Meanwhile, site p4 methionine mutation to hydrophobic residues isoleucine (M4I) or leucine (M4L) modestly increases HLA binding affinity. Select p6 mutations to cysteine (Y6C) or isoleucine (Y6I) exhibit favorable TCR binding affinities, while a swap p5-p6 tyrosine-valine double mutant (V5Y_Y6V) and a p6-p7 glutamine-glutamine double mutant (Y6Q_Y7Q) exhibit enhanced HLA binding affinity but weakened TCR affinity. This work holds relevance to potential T1D antigen-based vaccine design and optimization.


Assuntos
Diabetes Mellitus Tipo 1 , Vacinas , Humanos , Autoantígenos , Glutamina , Isoleucina , Insulina , Receptores de Antígenos de Linfócitos T , Mutagênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA