Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nano Lett ; 23(7): 2831-2838, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36897125

RESUMO

Enhancing the phototherapy efficacy of organic photosensitizers through molecular design is a fascinating but challenging task. Herein, we propose a simple design strategy to first realize the generation of superoxide anion radical (O2•-) by A-D-A fused-ring photosensitizers. Through replacing one cyano group of traditional end group with an ester group, we designed a novel nonplanar end group (A unit) to synthesize a novel A-D-A photosensitizer F8CA. In a comparison with its counterpart F8CN with the traditional end group, F8CA displays more loose packing and larger spin-orbit coupling constants. The F8CA nanoparticles showed higher photodynamic activities with the generation capability of singlet oxygen (1O2), hydroxyl radical (•OH), and O2•-, while F8CN nanoparticles could only generate 1O2 and •OH. In addition, F8CA nanoparticles still remain high photothermal conversion efficiency (61%). As a result, F8CA nanoparticles perform well in hypoxia-tolerant tumor phototherapy. This study brings an effective design thought for A-D-A photosensitizers.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fármacos Fotossensibilizantes , Fototerapia , Neoplasias/patologia , Oxigênio Singlete
2.
Chemistry ; 28(72): e202202680, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170107

RESUMO

Organelle-targeted type I photodynamic therapy (PDT) shows great potential to overcome the hypoxic microenvironment in solid tumors. The endoplasmic reticulum (ER) is an indispensable organelle in cells with important biological functions. When the ER is damaged due to the production of reactive oxygen species (ROS), the accumulation of misfolded proteins will interfere with ER homeostasis, resulting in ER stress. Here, an ER-targeted benzophenothiazine-based photosensitizer NBS-ER was presented. ER targeting modification significantly reduced the dark toxicity and improved phototoxicity index (PI). NBS-ER could effectively produce O2 - ⋅ with near-infrared irradiation, making its phototoxicity under hypoxia close to that under normoxia. Meanwhile, the photoinduced ROS triggered ER stress and induced apoptosis. In addition, NBS-ER possessed excellent photodynamic therapeutic effect in 4T1-tumor-bearing mice.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Retículo Endoplasmático/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Hipóxia/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Small ; 16(23): e2001059, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378337

RESUMO

Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2∙- ) nano-photogenerator as a highly effcient type I photosensitizer with robust vascular-disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)-vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron-rich polymer-brushes methoxy-poly(ethylene glycol)-b-poly(2-(diisopropylamino) ethyl methacrylate) (mPEG- PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core-shell intermolecular electron transfer between BDPVDA and mPEG-PPDA, remarkable O2∙- can be produced by PBV NPs under near-infrared irradiation even in severe hypoxic environment (2% O2 ), thus to accomplish effective hypoxic-tumor elimination. Simultaneously, the efficient ester-bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut-down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary-tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic-and-metastatic tumor treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Hipóxia/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Microambiente Tumoral
4.
Adv Healthc Mater ; 13(8): e2303175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37985358

RESUMO

As prospective phototheranostic agents for cancer imaging and therapy, semiconducting organic molecule-based nanomedicines are developed. However, near-infrared (NIR) emission, and tunable type I (O2 • -) and type II (1O2) photoinduced reactive oxygen species (ROS) generation to boost cancer photoimmunotherapy remains a big challenge. Herein, a series of D-π-A structures, NIR absorbing perylene diimides (PDIs) with heavy atom bromide modification at the bay position of PDIs are prepared for investigating the optimal photoinduced type I/II ROS generation. The heavy atom effect has demonstrated a reduction of molecular ∆EST and promotion of the intersystem crossing processes of PDIs, enhancing the photodynamic therapy (PDT) efficacy. The modification of three bromides and one pyrrolidine at the bay position of PDI (TBDT) has demonstrated the best type I/II PDT performance by batch experiments and theoretical calculations. TBDT based nanoplatforms (TBDT NPs) enable type I/II PDT in the hypoxic tumor microenvironment as a strong immunogenic cell death (ICD) inducer. Moreover, TBDT NPs showing NIR emission allow in vivo bioimaging guided phototherapy of tumor. This work uses novel PDIs with adjustable type I/II ROS production to promote antitumor immune response and accomplish effective tumor eradication, consequently offering molecular guidelines for building high-efficiency ICD inducers.


Assuntos
Antineoplásicos , Imidas , Nanopartículas , Neoplasias , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Perileno/química , Perileno/uso terapêutico , Estudos Prospectivos , Nanopartículas/química , Fototerapia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Acta Biomater ; 180: 394-406, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615810

RESUMO

The construction and optimization of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) functions remain challenging. In this study, we aimed to design and synthesize four donor-acceptor (D-A) type aggregation-induced emission molecules: PSI, TPSI, PSSI, and TPSSI. We employed phenothiazine as an electron donor and 1,3-bis(dicyanomethylidene)indan as a strong electron acceptor in the synthesis process. Among them, TPSSI exhibited efficient type I reactive oxygen species generation, high photothermal conversion efficiency (45.44 %), and near-infrared emission. These observations can be attributed to the introduction of a triphenylamine electron donor group and a thiophene unit, which resulted in increased D-A strengths, a reduced singlet-triplet energy gap, and increased free intramolecular motion. TPSSI was loaded into bovine serum albumin to prepare biocompatible TPSSI nanoparticles (NPs). Our results have indicated that TPSSI NPs can target lipid droplets with negligible dark toxicity and can efficiently generate O2•- in hypoxic tumor environments. Moreover, TPSSI NPs selectively targeted 4T1 tumor tissues and exhibited a good PDT-PTT synergistic effect in vitro and in vivo. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technologies. STATEMENT OF SIGNIFICANCE: The construction of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy, and photothermal therapy functions, and its optimization remain challenging. In this study, we construct four donor-acceptor aggregation-induced emission molecules using phenothiazine as an electron donor and 1,3-Bis(dicyanomethylidene)indan as a strong electron acceptor. By optimizing the molecular structure, an integrated phototherapy agent with fluorescence imaging ability and high photodynamic / photothermal therapy performance was prepared. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technology.


Assuntos
Fotoquimioterapia , Terapia Fototérmica , Animais , Fotoquimioterapia/métodos , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Raios Infravermelhos , Nanopartículas/química , Nanopartículas/uso terapêutico
6.
Adv Healthc Mater ; 12(29): e2302031, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515529

RESUMO

The presence of a biofilm matrix barrier and hypoxic microenvironment within the biofilm significantly impedes the efficacy of photodynamic therapy for bacterial biofilm infections. Herein, a phototherapeutic nanoagent with type-I photodynamic behavior and nitric oxide (NO) release performance is reported for overcoming biofilm-associated infectious diseases. Sodium nitroprusside (SNP), a NO donor, is loaded onto amino-modified mesoporous silica nanoparticles (MSN) to form MSN@SNP NPs. The resulting nanoparticles are further modified with a porphyrin-based metal-organic framework (Ti-TCPP MOF) to obtain MSN@MOF/SNP NPs (MMS NPs) for phototherapeutic applications. In the hypoxia biofilm microenvironment, the MMS NPs release NO to enhance the biofilm permeability and induce the generation of hydroxyl radical (•OH) and superoxide anion radical (O2 •- ) via Type-I photodynamic pathway under laser irradiation. Subsequently, the biofilm-associated infections are effectively eliminated through reactive oxygen species (ROS) and NO gas synergistic therapy. In addition, NO also stimulates collagen deposition and promotes angiogenesis in vivo. Therefore, the MMS NPs efficiently treat biofilm-related infections, providing an alternative approach to combat biofilm-associated infectious diseases.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Nanopartículas , Fotoquimioterapia , Humanos , Óxido Nítrico , Fotoquimioterapia/métodos , Dióxido de Silício , Hipóxia , Biofilmes , Fármacos Fotossensibilizantes/farmacologia
7.
Adv Sci (Weinh) ; 10(29): e2304042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559173

RESUMO

Despite advances in cancer therapy, the existence of self-renewing cancer stem cells (CSC) can lead to tumor recurrence and radiation resistance, resulting in treatment failure and high mortality in patients. To address this issue, a near-infrared (NIR) laser-induced synergistic therapeutic platform has been developed by incorporating aggregation-induced emission (AIE)-active phototheranostic agents and sulfur dioxide (SO2 ) prodrug into a biocompatible hydrogel, namely TBH, to suppress malignant CSC growth. Outstanding hydroxyl radical (·OH) generation and photothermal effect of the AIE phototheranostic agent actualizes Type I photodynamic therapy (PDT) and photothermal therapy through 660 nm NIR laser irradiation. Meanwhile, a large amount of SO2 is released from the SO2 prodrug in thermo-sensitive TBH gel, which depletes upregulated glutathione in CSC and consequentially promotes ·OH generation for PDT enhancement. Thus, the resulting TBH hydrogel can diminish CSC under 660 nm laser irradiation and finally restrain tumor recurrence after radiotherapy (RT). In comparison, the tumor in the mice that were only treated with RT relapsed rapidly. These findings reveal a double-boosting ·OH generation protocol, and the synergistic combination of AIE-mediated PDT and gas therapy provides a novel strategy for inhibiting CSC growth and cancer recurrence after RT, which presents great potential for clinical treatment.


Assuntos
Recidiva Local de Neoplasia , Fotoquimioterapia , Terapia Fototérmica , Pró-Fármacos , Animais , Humanos , Camundongos , Hidrogéis , Recidiva Local de Neoplasia/terapia , Fotoquimioterapia/métodos , Óxidos de Enxofre
8.
Adv Healthc Mater ; 12(24): e2300530, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37186515

RESUMO

Photodynamic therapy (PDT), with its advantages of high targeting, minimally invasive, and low toxicity side effects, has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment (TME) presents hypoxia due to the low oxygen (O2 ) supply caused by abnormal vascularization in neoplastic tissues and high O2 consumption induced by the rapid proliferation of tumor cells. The efficacy of oxygen-consumping PDT can be hampered by a hypoxic TME. To address this problem, researchers have been developing advanced nanoplatforms and strategies to enhance the therapeutic effect of PDT in tumor treatment. This review summarizes recent advanced PDT therapeutic strategies to against the hypoxic TME, thus enhancing PDT efficacy, including increasing O2 content in TME through delivering O2 to the tumors and in situ generations of O2 ; decreasing the O2 consumption during PDT by design of type I photosensitizers. Moreover, recent synergistically combined therapy of PDT and other therapeutic methods such as chemotherapy, photothermal therapy, immunotherapy, and gas therapy is accounted for by addressing the challenging problems of mono PDT in hypoxic environments, including tumor resistance, proliferation, and metastasis. Finally, perspectives of the opportunities and challenges of PDT in future clinical research and translations are provided.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico , Oxigênio , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Biomaterials ; 295: 122034, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746049

RESUMO

Radioresistance of Cancer stem cell (CSC) is an important cause of tumor recurrence after radiotherapy (RT). Herein, we designed a type I aggregation-induced emission (AIE) photosensitiser-loaded biomimetic mesoporous organosilicon nanosystem (PMT) for precise depletion of CSC to prevent tumor recurrence after RT. This PMT system is composed of a type I AIE photosensitiser (TBP-2) loaded mesoporous organosilicon nanoparticles (MON) with an outer platelet membrane. The PMT system is able to specifically target CSC. Intracellular glutathione activity leads to MON degradation and the release of TBP-2. Type I photodynamic therapy is activated by exposure to white light, producing a large amount of hydroxyl radicals to promote CSC death. The results of in vivo experiments demonstrated specific removal of CSC following PMT treatment, with no tumor recurrence observed when combined with RT. However, tumor recurrence was observed in mice that received RT only. The expression of CSC markers was significantly reduced following PMT treatment. We demonstrate the development of a system for the precise removal of CSC with good biosafety and high potential for clinical translation. We believe the PMT nanosystem represents a novel idea in the prevention of tumor recurrence.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/metabolismo , Biomimética , Células-Tronco Neoplásicas/patologia , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
10.
ACS Appl Mater Interfaces ; 14(4): 5112-5121, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048696

RESUMO

Type-I photodynamic therapy (PDT) with less oxygen consumption shows great potential for overcoming the vicious hypoxia typically observed in solid tumors. However, the development of type-I PDT is hindered by insufficient radical generation and the ambiguous design strategy of type-I photosensitizers (PSs). Therefore, developing highly efficient type-I PSs and unveiling their structure-function relationship are still urgent and challenging. Herein, we develop two phenanthro[9,10-d]imidazole derivatives (AQPO and AQPI) with aggregation-induced emission (AIE) characteristics and boost their reactive oxygen species (ROS) generation efficiency by reducing singlet-triplet splitting (ΔEST). Both AQPO and AQPI show ultrasmall ΔEST values of 0.09 and 0.12 eV, respectively. By incorporating electron-rich anisole, the categories of generated ROS by AIE PSs are changed from type-II (singlet oxygen, 1O2) to type-I (superoxide anion radical, O2•- and hydroxyl radical, •OH). We demonstrate that the assembled AQPO nanoparticles (NPs) achieve a 3.2- and 2.9-fold increase in the O2•- and •OH generation efficiencies, respectively, compared to those of AQPI NPs (without anisole) in water, whereas the 1O2 generation efficiency of AQPO NPs is lower (0.4-fold) than that of AQPI NPs. The small ΔEST and anisole group endow AQPO with an excellent capacity for type-I ROS generation. In vitro and in vivo experiments show that AQPO NPs achieve an excellent hypoxia-overcoming PDT effect by efficiently eliminating tumor cells upon white light irradiation with good biosafety.


Assuntos
Imidazóis/uso terapêutico , Neoplasias/tratamento farmacológico , Fenantrolinas/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Células A549 , Animais , Portadores de Fármacos/química , Feminino , Humanos , Imidazóis/síntese química , Imidazóis/efeitos da radiação , Luz , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células NIH 3T3 , Nanopartículas/química , Fenantrolinas/síntese química , Fenantrolinas/efeitos da radiação , Fosfatidiletanolaminas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Polietilenoglicóis/química
11.
Biomaterials ; 283: 121462, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35272223

RESUMO

Although promising, the efficiency of aggregation-induced emission luminogens (AIEgens)-based photodynamic therapy (PDT) is limited by cellular glutathione (GSH). GSH is not a terminal reducing agent but it can be oxidized and subsequently reduced to its original state by reductases to further participate in antioxidant activity. It is therefore imperative to control GSH for effectively inducing oxidation within tumor cells. Recent studies showed that tumor cell metabolism depends mainly on glutamine, which is also the nitrogen and ATP source for GSH synthesis. Therefore, glutamine-based starvation therapy may be effective in enhancing photodynamic therapy. In this work, tumor-derived exosomes were developed for co-delivering AIEgens and proton pump inhibitors (PPI) for tumor combination therapy. Tumor-derived exosomes could specifically deliver drugs to the tumor sites, where PPI inhibited cell glutamine metabolism, suppressed tumor cell GSH and ATP production, and improved the effect of type-I PDT from AIEgens. When used in the treatment of MGC803 gastric cancer subcutaneous model, our system shows a high tumor growth inhibition rate, and even promoting tumor immunogenic death. This is the first work which combine inhibition of glutamine metabolism with PDT, and it has the potential to be applied for future designs of new tumor metabolic therapies and photodynamic systems.


Assuntos
Exossomos , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Exossomos/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores da Bomba de Prótons/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/uso terapêutico
12.
Adv Mater ; 32(45): e2003471, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33029855

RESUMO

As a common feature in a majority of malignant tumors, hypoxia has become the Achilles' heel of photodynamic therapy (PDT). The development of type-I photosensitizers that show hypoxia-tolerant PDT efficiency provides a straightforward way to address this issue. However, type-I PDT materials have rarely been discovered. Herein, a π-conjugated molecule with A-D-A configuration, COi6-4Cl, is reported. The H2 O-dispersible nanoparticle of COi6-4Cl can be activated by an 880 nm laser, and displays hypoxia-tolerant type I/II combined PDT capability, and more notably, a high NIR-II fluorescence with a quantum yield over 5%. Moreover, COi6-4Cl shows a negligible photothermal conversion effect. The non-radiative decay of COi6-4Cl is suppressed in the dispersed and aggregated state due to the restricted molecular vibrations and distinct intermolecular steric hindrance induced by its four bulky side chains. These features make COi6-4Cl a distinguished single-NIR-wavelength-activated phototheranostic material, which performs well in NIR-II fluorescence-guided PDT treatment and shows an enhanced in vivo anti-tumor efficiency over the clinically approved Chlorin e6, by the equal stresses on hypoxia-tolerant anti-tumor therapy and deep-penetration imaging. Therefore, the great potential of COi6-4Cl in precise PDT cancer therapy against hypoxia challenges is demonstrated.


Assuntos
Raios Infravermelhos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanomedicina Teranóstica/métodos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Linhagem Celular Tumoral , Clorofilídeos , Humanos , Nanopartículas/química , Porfirinas/química , Porfirinas/farmacologia
13.
Adv Sci (Weinh) ; 6(15): 1900848, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31406677

RESUMO

Photodynamic therapy (PDT) has emerged as an alternative treatment of cancers. However, the therapeutic efficiency of PDT is severely limited by the microenvironment of insufficient oxygen (O2) supply and overexpression of glutathione (GSH) in the tumor. Herein, a biodegradable O2-loaded CuTz-1@F127 (denoted as CuTz-1-O2@F127) metal-organic framework (MOF) therapeutic platform is presented for enhanced PDT by simultaneously overcoming intracellular hypoxia and reducing GSH levels in the tumor. The Cu(I)-based MOF is capable of a Fenton-like reaction to generate •OH and O2 in the presence of H2O2 under NIR irradiation. Meanwhile, the CuTz-1-O2@F127 nanoparticles (NPs) can release adsorbed O2, which further alleviates intracellular hypoxia. In addition, the CuI in CuTz-1@F127 can react with intracellular GSH to reduce the excess GSH. In this way, the efficiency of PDT is greatly enhanced. After tail intravenous injection, the NPs show high antitumor efficacy through a synergistic effect under 808 nm laser irradiation. More importantly, the NPs are biodegradable. In vivo biodistribution and excretion experiments demonstrate that a total of nearly 90% of the NPs can be excreted via feces and urine within 30 d, which indicates significant prospects in the clinical treatment of cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA