Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.411
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 115(4): 937-951, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154288

RESUMO

Plant height (PH) is an important agronomic trait affecting crop architecture, biomass, resistance to lodging and mechanical harvesting. Elucidating the genetic governance of plant height is crucial because of the global demand for high crop yields. However, during the rapid growth period of plants the PH changes a lot on a daily basis, which makes it difficult to accurately phenotype the trait by hand on a large scale. In this study, an unmanned aerial vehicle (UAV)-based remote-sensing phenotyping platform was applied to obtain time-series PHs of 320 upland cotton accessions in three different field trials. The results showed that the PHs obtained from UAV images were significantly correlated with ground-based manual measurements, for three trials (R2 = 0.96, 0.95 and 0.96). Two genetic loci on chromosomes A01 and A11 associated with PH were identified by genome-wide association studies (GWAS). GhUBP15 and GhCUL1 were identified to influence PH in further analysis. We obtained a time series of PH values for three field conditions based on remote sensing with UAV. The key genes identified in this study are of great value for the breeding of ideal plant architecture in cotton.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Dispositivos Aéreos não Tripulados , Fatores de Tempo , Melhoramento Vegetal
2.
Environ Res ; 250: 118520, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401683

RESUMO

The sedentary and less active lifestyle of modern college students has a significant impact on the physical and mental well-being of the college community. Campus Green Spaces (GSs) are crucial in promoting physical activity and improving students' health. However, previous research has focused on evaluating campuses as a whole, without considering the diverse spatial scenarios within the campus environment. Accordingly, this study focused on the young people's residential scenario in university and constructed a framework including a comprehensive set of objective and subjective GSs exposure metrics. A systematic, objective exposure assessment framework ranging from 2D (GSs areas), and 2.5D (GSs visibility) to 3D (GSs volume) was innovatively developed using spatial analysis, deep learning technology, and unmanned aerial vehicle (UAV) measurement technology. Subjective exposure metrics incorporated GSs visiting frequency, GSs visiting duration, and GSs perceived quality. Our cross-sectional study was based on 820 university students in Nanjing, China. Subjective measures of GSs exposure, physical activity, and health status were obtained through self-reported questionnaires. The Generalized Linear Model (GLM) was used to evaluate the associations between GSs exposure, physical activity, and perceived health. Physical activity and social cohesion were considered as mediators, and path analysis based on Structural Equation Modeling (SEM) was used to disentangle the mechanisms linking GSs exposure to the health status of college students. We found that (1) 2D indicator suggested significant associations with health in the 100m buffer, and the potential underlying mechanisms were: GSs area → Physical activity → Social cohesion → Physical health → Mental health; GSs area → Physical activity → Social cohesion → Mental health. (2) Subjective GSs exposure indicators were more relevant in illustrating exposure-response relationships than objective ones. This study can clarify the complex nexus and mechanisms between campus GSs, physical activity, and health, and provide a practical reference for health-oriented campus GSs planning.


Assuntos
Exercício Físico , Estudantes , Humanos , Estudantes/psicologia , Masculino , Adulto Jovem , Feminino , Universidades , Estudos Transversais , China , Adolescente , Nível de Saúde
3.
Int J Health Geogr ; 23(1): 13, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764024

RESUMO

BACKGROUND: In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control measures to specific areas. Supervised classification approaches have been largely used to automatically detect vector habitats. However, manual data labelling for model training limits their use for rapid responses. Open-source foundation models such as the Meta AI Segment Anything Model (SAM) can facilitate the manual digitalization of high-resolution images. This pre-trained model can assist in extracting features of interest in a diverse range of images. Here, we evaluated the performance of SAM through the Samgeo package, a Python-based wrapper for geospatial data, as it has not been applied to analyse remote sensing images for epidemiological studies. RESULTS: We tested the identification of two land cover classes of interest: water bodies and human settlements, using different UAV acquired imagery across five malaria-endemic areas in Africa, South America, and Southeast Asia. We employed manually placed point prompts and text prompts associated with specific classes of interest to guide the image segmentation and assessed the performance in the different geographic contexts. An average Dice coefficient value of 0.67 was obtained for buildings segmentation and 0.73 for water bodies using point prompts. Regarding the use of text prompts, the highest Dice coefficient value reached 0.72 for buildings and 0.70 for water bodies. Nevertheless, the performance was closely dependent on each object, landscape characteristics and selected words, resulting in varying performance. CONCLUSIONS: Recent models such as SAM can potentially assist manual digitalization of imagery by vector control programs, quickly identifying key features when surveying an area of interest. However, accurate segmentation still requires user-provided manual prompts and corrections to obtain precise segmentation. Further evaluations are necessary, especially for applications in rural areas.


Assuntos
Mudança Climática , Humanos , Animais , Malária/epidemiologia , Mosquitos Vetores , Tecnologia de Sensoriamento Remoto/métodos , Sistemas de Informação Geográfica , Processamento de Imagem Assistida por Computador/métodos
5.
Ecotoxicol Environ Saf ; 282: 116675, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971099

RESUMO

Unmanned aerial vehicle (UAV) sprayers are widely utilized in commercial aerial application of plant protection products (PPPs) in East Asian countries due to their high flexibility, high efficiency and low cost, but spray drift can lead to low utilization of UAV sprayers application, environmental pollution and bystander exposure risk. Droplet size and spray volume are critical factors affecting spray drift. Currently, the high temperature and humidity environment under the influence of the tropical monsoon climate brings new challenges for UAV sprayers. Therefore, in this study, pesticides were simulated with seduction red solution, and spraying trials were conducted using the DJI commercial T40 UAV sprayers for a typical tropical crop, coconut. In this study, the spray drift distribution of droplets on the ground and in the air, as well as the bystander exposure risk, were comparatively analyzed using droplet size (VF, M, and C) and spray volume (75 L/hm2 and 60 L/hm2) as trial variables. The results indicated that the spray drift characteristics of UAV sprayers were significantly affected by droplet size and spray volume. The spray drift percentage was negatively correlated with the downwind distance and the sampling height. The smaller the droplet size, the farther the buffer zone distance, up to more than 30 m, and the cumulative drift percentage is also greater, resulting in a significant risk of spray drift. The reduction in spray volume helped to reduce the spray drift, and the cumulative drift percentage was reduced by 73.87 % with a droplet size of M. The region of the body where spray drift is deposited the most on bystanders is near chest height. This study provides a reference for the rational and safe use of multirotor UAV sprayers application operations in the tropics and enriches the spray drift database in the tropics.

6.
Sensors (Basel) ; 24(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339713

RESUMO

An Internet of Things (IoT) system for managing and coordinating unmanned aerial vehicles (UAVs) has revolutionized the industrial sector. The largest issue with the design of the Internet of UAVs (IoUAV) is security. Conspicuously, the novel contribution of the proposed work is to develop a layered authentication approach to facilitate safe IoUAV communication. Specifically, four modules, including the pre-deployment module, user registration module, login module, and authentication module, form the basis of security analysis. In the proposed technique, UAVs are added to the IoUAV registry. The next step is the user registration module, where people are registered with the UAV so they may access the information in real time. In the login module, the user connects with the server for data transmission. Finally, in the authentication module, all entities, including users, servers, and UAVs, are authenticated to ensure secure data communication. The proposed method achieves peak performance as compared to the state-of-the-art techniques in terms of statistical parameters of latency (3.255s), throughput (90.15%), and packet loss (8.854%).

7.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400501

RESUMO

The trajectory or moving-target tracking feature is desirable, because it can be used in various applications where the usefulness of UAVs is already proven. Tracking moving targets can also be applied in scenarios of cooperation between mobile ground-based and flying robots, where mobile ground-based robots could play the role of mobile landing pads. This article presents a novel proposition of an approach to position-tracking problems utilizing artificial potential fields (APF) for quadcopter UAVs, which, in contrast to well-known APF-based path planning methods, is a dynamic problem and must be carried out online while keeping the tracking error as low as possible. Also, a new flight control is proposed, which uses roll, pitch, and yaw angle control based on the velocity vector. This method not only allows the UAV to track a point where the potential function reaches its minimum but also enables the alignment of the course and velocity to the direction and speed given by the velocity vector from the APF. Simulation results present the possibilities of applying the APF method to holonomic UAVs such as quadcopters and show that such UAVs controlled on the basis of an APF behave as non-holonomic UAVs during 90° turns. This allows them and the onboard camera to be oriented toward the tracked target. In simulations, the AR Drone 2.0 model of the Parrot quadcopter is used, which will make it possible to easily verify the method in real flights in future research.

8.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475132

RESUMO

Flight parameters are crucial criteria for UAV control, playing a significant role in ensuring the safe and efficient completion of missions. Launch force and airspeed information are key parameters in the early and middle stages of flight, serving as important data for monitoring the UAV's flight status. In response to challenges such as weak launch force, low identification rates, small airspeed, and low recognition accuracy in UAVs, a method for identifying UAV flight parameters based on launch force and airspeed is proposed. From the aspect of launch force identification, a recognition method based on a low-g value accelerometer information source is proposed, utilizing a 'multi-level time window + threshold' approach. For airspeed identification, an optimization method for airspeed measurement under the Kalman filter architecture is introduced. A device for airspeed measurement based on pressure sensors is designed, and the recommended installation position is determined through simulation. Furthermore, the feasibility and robustness of the proposed launch force identification and airspeed measurement optimization methods are validated through simulation. Finally, the effectiveness of the design is verified through centrifuge and wind tunnel experiments. This research provides technical support for the identification of the launch force and airspeed measurement in UAVs.

9.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610394

RESUMO

This paper proposes a new sensor using optical flow to stabilize a quadrotor when a GPS signal is not available. Normally, optical flow varies with the attitude of the aerial vehicle. This produces positive feedback on the attitude control that destabilizes the orientation of the vehicle. To avoid this, we propose a novel sensor using an optical flow camera with a 6DoF IMU (Inertial Measurement Unit) mounted on a two-axis anti-shake stabilizer mobile aerial gimbal. We also propose a robust algorithm based on Sliding Mode Control for stabilizing the optical flow sensor downwards independently of the aerial vehicle attitude. This method improves the estimation of the position and velocity of the quadrotor. We present experimental results to show the performance of the proposed sensor and algorithms.

10.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000823

RESUMO

Unmanned aerial vehicle (UAV)-based object detection methods are widely used in traffic detection due to their high flexibility and extensive coverage. In recent years, with the increasing complexity of the urban road environment, UAV object detection algorithms based on deep learning have gradually become a research hotspot. However, how to further improve algorithmic efficiency in response to the numerous and rapidly changing road elements, and thus achieve high-speed and accurate road object detection, remains a challenging issue. Given this context, this paper proposes the high-efficiency multi-object detection algorithm for UAVs (HeMoDU). HeMoDU reconstructs a state-of-the-art, deep-learning-based object detection model and optimizes several aspects to improve computational efficiency and detection accuracy. To validate the performance of HeMoDU in urban road environments, this paper uses the public urban road datasets VisDrone2019 and UA-DETRAC for evaluation. The experimental results show that the HeMoDU model effectively improves the speed and accuracy of UAV object detection.

11.
Sensors (Basel) ; 24(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39000859

RESUMO

This paper investigates the performance of dual-hop unmanned aerial vehicle (UAV)-assisted communication channels, employing a decode-and-forward (DF) relay architecture. The system leverages terahertz (THz) communication for the primary hop and visible light communication (VLC) for the secondary hop. We conduct an in-depth analysis by deriving closed-form expressions for the end-to-end (E2E) bit error rate (BER). Additionally, we use a Monte Carlo simulation approach to generate best-fitting curves, validating our analytical expressions. A performance evaluation through BER and outage probability metrics demonstrates the effectiveness of the proposed system. Specifically, our results indicate that the proposed system outperforms Free-Space Optics (FSO)-VLC and Radio-Frequency (RF)-VLC at a higher signal-to-noise ratio (SNR). The results of this study provide valuable insights into the feasibility and limitations of UAV-assisted THz-VLC communication systems.

12.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000929

RESUMO

Defect inspection of existing buildings is receiving increasing attention for digitalization transfer in the construction industry. The development of drone technology and artificial intelligence has provided powerful tools for defect inspection of buildings. However, integrating defect inspection information detected from UAV images into semantically rich building information modeling (BIM) is still challenging work due to the low defect detection accuracy and the coordinate difference between UAV images and BIM models. In this paper, a deep learning-based method coupled with transfer learning is used to detect defects accurately; and a texture mapping-based defect parameter extraction method is proposed to achieve the mapping from the image U-V coordinate system to the BIM project coordinate system. The defects are projected onto the surface of the BIM model to enrich a surface defect-extended BIM (SDE-BIM). The proposed method was validated in a defect information modeling experiment involving the No. 36 teaching building of Nantong University. The results demonstrate that the methods are widely applicable to various building inspection tasks.

13.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001049

RESUMO

The use of magnetometers arranged in a gradiometer configuration offers a practical and widely used solution, particularly in archaeological applications where the sources of interest are generally shallow. Since magnetic anomalies due to archaeological remains often have low amplitudes, highly sensitive magnetic sensors are kept very close to the ground to reveal buried structures. However, the deployment of Unmanned Aerial Vehicles (UAVs) is increasingly becoming a reliable and valuable tool for the acquisition of magnetic data, providing uniform coverage of large areas and access to even very steep terrain, saving time and reducing risks. However, the application of a vertical gradiometer for drone-borne measurements is still challenging due to the instability of the system drone magnetometer in flight and noise issues due to the magnetic interference of the mobile platform or related to the oscillation of the suspended sensors. We present the implementation of a magnetic vertical gradiometer UAV system and its use in an archaeological area of Southern Italy. To reduce the magnetic and electromagnetic noise caused by the aircraft, the magnetometer was suspended 3m below the drone using ropes. A Continuous Wavelet Transform analysis of data collected in controlled tests confirmed that several characteristic power spectrum peaks occur at frequencies compatible with the magnetometer oscillations. This noise was then eliminated with a properly designed low-pass filter. The resulting drone-borne vertical gradient data compare very well with ground-based magnetic measurements collected in the same area and taken as a control dataset.

14.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001116

RESUMO

This study investigates the dynamic deployment of unmanned aerial vehicles (UAVs) using edge computing in a forest fire scenario. We consider the dynamically changing characteristics of forest fires and the corresponding varying resource requirements. Based on this, this paper models a two-timescale UAV dynamic deployment scheme by considering the dynamic changes in the number and position of UAVs. In the slow timescale, we use a gate recurrent unit (GRU) to predict the number of future users and determine the number of UAVs based on the resource requirements. UAVs with low energy are replaced accordingly. In the fast timescale, a deep-reinforcement-learning-based UAV position deployment algorithm is designed to enable the low-latency processing of computational tasks by adjusting the UAV positions in real time to meet the ground devices' computational demands. The simulation results demonstrate that the proposed scheme achieves better prediction accuracy. The number and position of UAVs can be adapted to resource demand changes and reduce task execution delays.

15.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931506

RESUMO

Within research on the cross-view geolocation of UAVs, differences in image sources and interference from similar scenes pose huge challenges. Inspired by multimodal machine learning, in this paper, we design a single-stream pyramid transformer network (SSPT). The backbone of the model uses the self-attention mechanism to enrich its own internal features in the early stage and uses the cross-attention mechanism in the later stage to refine and interact with different features to eliminate irrelevant interference. In addition, in the post-processing part of the model, a header module is designed for upsampling to generate heat maps, and a Gaussian weight window is designed to assign label weights to make the model converge better. Together, these methods improve the positioning accuracy of UAV images in satellite images. Finally, we also use style transfer technology to simulate various environmental changes in order to expand the experimental data, further proving the environmental adaptability and robustness of the method. The final experimental results show that our method yields significant performance improvement: The relative distance score (RDS) of the SSPT-384 model on the benchmark UL14 dataset is significantly improved from 76.25% to 84.40%, while the meter-level accuracy (MA) of 3 m, 5 m, and 20 m is increased by 12%, 12%, and 10%, respectively. For the SSPT-256 model, the RDS has been increased to 82.21%, and the meter-level accuracy (MA) of 3 m, 5 m, and 20 m has increased by 5%, 5%, and 7%, respectively. It still shows strong robustness on the extended thermal infrared (TIR), nighttime, and rainy day datasets.

16.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931732

RESUMO

The recent advancements of mobile edge computing (MEC) technologies and unmanned aerial vehicles (UAVs) have provided resilient and flexible computation services for ground users beyond the coverage of terrestrial service. In this paper, we focus on a UAV-assisted MEC system in which the UAV equipped with MEC servers is used to assist user devices in computing their tasks. To minimize the weighted average energy consumption and delay in the UAV-assisted MEC system, a LQR-Lagrange-based DDPG (LLDDPG) algorithm, which jointly optimizes the user task offloading and the UAV trajectory design, is proposed. To be specific, the LLDDPG algorithm consists of three subproblems. The DDPG algorithm is used to address the issue of UAV desired trajectory planning, and subsequently, the LQR-based algorithm is employed to achieve the real-time tracking control of UAV desired trajectory. Finally, the Lagrange duality method is proposed to solve the optimization problem of computational resource allocation. Simulation results indicate that the proposed LLDDPG algorithm can effectively improve the system resource management and realize the real-time UAV trajectory design.

17.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894139

RESUMO

This paper presents an overview on the state of the art in copter drones and their components. It starts by providing an introduction to unmanned aerial vehicles in general, describing their main types, and then shifts its focus mostly to multirotor drones as the most attractive for individual and research use. This paper analyzes various multirotor drone types, their construction, typical areas of implementation, and technology used underneath their construction. Finally, it looks at current challenges and future directions in drone system development, emerging technologies, and future research topics in the area. This paper concludes by highlighting some key challenges that need to be addressed before widespread adoption of drone technologies in everyday life can occur. By summarizing an up-to-date survey on the state of the art in copter drone technology, this paper will provide valuable insights into where this field is heading in terms of progress and innovation.

18.
Sensors (Basel) ; 24(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38894344

RESUMO

This research presents an innovative methodology aimed at monitoring jet trajectory during the jetting process using imagery captured by unmanned aerial vehicles (UAVs). This approach seamlessly integrates UAV imagery with an offline learnable prompt vector module (OPVM) to enhance trajectory monitoring accuracy and stability. By leveraging a high-resolution camera mounted on a UAV, image enhancement is proposed to solve the problem of geometric and photometric distortion in jet trajectory images, and the Faster R-CNN network is deployed to detect objects within the images and precisely identify the jet trajectory within the video stream. Subsequently, the offline learnable prompt vector module is incorporated to further refine trajectory predictions, thereby improving monitoring accuracy and stability. In particular, the offline learnable prompt vector module not only learns the visual characteristics of jet trajectory but also incorporates their textual features, thus adopting a bimodal approach to trajectory analysis. Additionally, OPVM is trained offline, thereby minimizing additional memory and computational resource requirements. Experimental findings underscore the method's remarkable precision of 95.4% and efficiency in monitoring jet trajectory, thereby laying a solid foundation for advancements in trajectory detection and tracking. This methodology holds significant potential for application in firefighting systems and industrial processes, offering a robust framework to address dynamic trajectory monitoring challenges and augment computer vision capabilities in practical scenarios.

19.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339604

RESUMO

Unmanned Aerial Vehicles (UAVs) have critical applications in various real-world scenarios, including mapping unknown environments, military reconnaissance, and post-disaster search and rescue. In these scenarios where communication infrastructure is missing, UAVs will form an ad hoc network and perform tasks in a distributed manner. To efficiently carry out tasks, each UAV must acquire and share global status information and data from neighbors. Meanwhile, UAVs frequently operate in extreme conditions, including storms, lightning, and mountainous areas, which significantly degrade the quality of wireless communication. Additionally, the mobility of UAVs leads to dynamic changes in network topology. Therefore, we propose a method that utilizes graph neural networks (GNN) to learn cooperative data dissemination. This method leverages the network topology relationship and enables UAVs to learn a decision policy based on local data structure, ensuring that all UAVs can recover global information. We train the policy using reinforcement learning that enhances the effectiveness of each transmission. After repeated simulations, the results validate the effectiveness and generalization of the proposed method.

20.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339638

RESUMO

In the field of unmanned systems, the combination of artificial intelligence with self-operating functionalities is becoming increasingly important. This study introduces a new method for autonomously detecting humans in indoor environments using unmanned aerial vehicles, utilizing the advanced techniques of a deep learning framework commonly known as "You Only Look Once" (YOLO). The key contribution of this research is the development of a new model (YOLO-IHD), specifically designed for human detection in indoor using drones. This model is created using a unique dataset gathered from aerial vehicle footage in various indoor environments. It significantly improves the accuracy of detecting people in these complex environments. The model achieves a notable advancement in autonomous monitoring and search-and-rescue operations, highlighting its importance for tasks that require precise human detection. The improved performance of the new model is due to its optimized convolutional layers and an attention mechanism that process complex visual data from indoor environments. This results in more dependable operation in critical situations like disaster response and indoor rescue missions. Moreover, when combined with an accelerating processing library, the model shows enhanced real-time detection capabilities and operates effectively in a real-world environment with a custom designed indoor drone. This research lays the groundwork for future enhancements designed to significantly increase the model's accuracy and the reliability of indoor human detection in real-time drone applications.


Assuntos
Inteligência Artificial , Dispositivos Aéreos não Tripulados , Humanos , Reprodutibilidade dos Testes , Sistemas Computacionais , Cultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA