Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytochem Anal ; 35(2): 288-307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37814999

RESUMO

BACKGROUND AND OBJECTIVE: The herb Rheum tanguticum (RT), a member of the Polygonaceae family, is listed in the Chinese Pharmacopoeia and has been widely used to treat cardiovascular and gastrointestinal disease. The research aimed to identify the different substances from two kinds of RT extraction methods and the in vivo biotransformation of RT components. METHODS: In this study, by using ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS), we have investigated the metabolomic variation and the in vivo metabolism of RT. A post-acquisition data processing software, PeakView, was applied to an accurate qualitative analysis of the chemical components in RT. RESULTS: Through plant metabolomics analysis, 24 related, differentially expressed metabolites of RT water extract and alcohol extract were obtained. Combined with novel identification strategies and systematic in vivo metabolism analysis, a total of 101 compounds were discovered or tentatively identified in rat serum (including 15 prototype compounds and 86 metabolites). CONCLUSION: In this study, a combination of extraction methods, liquid chromatography-mass spectrometry (LC-MS) technology, and in vivo animal metabolism studies have been established for the screening, identification, and research of chemical active components of natural medicines. LC-MS analysis combined with plant metabolomics was used to study the differential metabolites between different extraction methods of RT. Based on UHPLC-Q-TOF-MS/MS technology, the composition and metabolism of rat plasma before and after RT administration were analysed in vivo, and 15 prototype components and 86 metabolites were detected.


Assuntos
Etanol , Rheum , Animais , Ratos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Metabolômica
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 420-430, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38403318

RESUMO

The chemical constituents of Schizonepetae Spica were qualitatively analyzed by UHPLC-Q-TOF-MS/MS. An Agilent poroshell 120 SB-C_(18) column(3.0 mm×100 mm, 2.7 µm) was used for gradient elution with 0.1% formic acid water(A)-acetonitrile(B) solution as mobile phase at the flow rate of 0.4 mL·min~(-1) and column temperature of 45 ℃. The data were collected by scanning in positive and negative ion modes, and the compounds were identified by comparison of reference materials and PeakView software. Ninety-seven compounds were identified from Schizonepetae Spica, including 28 flavonoids, 23 phenolic acids, 23 fatty acids, 15 terpenoids, and 8 other compounds. The UHPLC-Q-TOF-MS/MS method established in this study can identify the chemical components of Schizonepetae Spica rapidly, accurately, and comprehensively, and provide a basis for the basic study of pharmacodynamic substances of Schizonepetae Spica.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Terpenos
3.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108473

RESUMO

Isopropoxy benzene guanidine (IBG) is a guanidine derivative with antibacterial activity against multidrug-resistant bacteria. A few studies have revealed the metabolism of IBG in animals. The aim of the current study was to identify potential metabolic pathways and metabolites of IBG. The detection and characterization of metabolites were performed with high-performance liquid chromatography tandem mass spectrometry (UHPLC-Q-TOF-MS/MS). Seven metabolites were identified from the microsomal incubated samples by using the UHPLC-Q-TOF-MS/MS system. The metabolic pathways of IBG in the rat liver microsomes involved O-dealkylation, oxygenation, cyclization, and hydrolysis. Hydroxylation was the main metabolic pathway of IBG in the liver microsomes. This research investigated the in vitro metabolism of IBG to provide a basis for the further pharmacology and toxicology of this compound.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Benzeno , Guanidina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos
4.
Biomed Chromatogr ; 36(4): e5314, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981541

RESUMO

Duvelisib is a dual inhibitor of phosphoinositide 3 kinase that received global approval by the US Food and Drug Administration in 2018 to treat follicular lymphoma after at least two prior systemic therapies. An extensive literature search revealed that, to date, metabolites of duvelisib have not been characterized and information on them is not available in any of the literature. Moreover, the metabolism pathway is yet to be established. This study aimed to investigate and characterize the metabolites of duvelisib generated in microsomes and S9 fractions. In this study, five duvelisib metabolites were identified using UHPLC-Q-TOF-MS/MS analysis technique. The structural characterization of the metabolites was performed by comparing the fragmentation pattern of duvelisib and its metabolites through an accurate mass measurement technique. Three metabolites were generated through phase I hydroxylation and dechlorination reactions. The other two metabolites were generated through a phase II glucuronidation reaction. The metabolism mechanism established through this study can be useful to improve the safety profile of drugs of similar categories in the future after establishment of the toxicity profile of the identified metabolites.


Assuntos
Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Isoquinolinas , Purinas , Espectrometria de Massas em Tandem/métodos
5.
Biomed Chromatogr ; 36(5): e5305, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34967034

RESUMO

Dahuang Zhechong Pill (DHZCP) is a traditional Chinese medicine prescription used to treat many diseases especially chronic liver disease accompanied by promotion of vascular normalization. In this work, UPLC-Q-TOF-MS/MS analysis was applied to identify the chemical components absorbed in the blood. HIF-1α, VEGF, Ang2 and Tie2 related to vascular normalization were detected to determine the dynamic changes of pharmacodynamic indicators. Then, the spectrum-effect relationship between the UHPLC fingerprint and pharmacodynamic indicators was evaluated dynamically using partial least squares (PLS). As a result, 103 components were identified from rat serum samples, including 56 original compounds and 47 metabolites. According to the PLS, active constituents of DHZCP acting on HIF-1α, VEGF, Ang2 and Tie2 (8, 15, 17 and 20) were found. In subsequent experiments on cells, 7/11 components of HIF-1α/VEGF were found in HepG2 and HUVEC cells, and 11/14/2 components of HIF-1α/VEGF/Tie2. The main pharmacodynamic components of DHZCP in promoting vascular normalization were successfully identified by the spectrum-effect relationship analysis.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Animais , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular
6.
Chem Biodivers ; 19(10): e202200361, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36017755

RESUMO

BACKGROUND: Curcumae Radix (CW) is traditionally used to treat dysmenorrhea caused by uterine spasm. However, the changes of its composition and anti-uterine spasms during vinegar processing and the mechanism in treating dysmenorrhea are not clear. OBJECTIVE: To elucidate the changes of anti-uterine spasm and its substance basis, and the mechanism of treating dysmenorrhea before and after vinegar processing. METHODS: The uterine spasm contraction model was established, and the uterine activity and its inhibition rate were calculated to evaluate the differences. The main chemical constituents of CW were quickly analyzed by UPLC-Q-TOF-MS/MS technology, and the differences between them were explored by multivariate statistical analysis. Then, the regulatory network of "active ingredients-core targets-signal pathways" related to dysmenorrhea was constructed by using network pharmacology, and the combination between differential active components and targets was verified by molecular docking. RESULTS: CW extract relaxed the isolated uterine by reducing the contractile tension, amplitude, and frequency. Compared with CW, the inhibitory effect of vinegar products was stronger, and the inhibition rate was 70.08 %. 39 compounds were identified from CW and 13 differential components were screened out (p<0.05). Network pharmacology screened 11 active components and 32 potential targets, involving 10 key pathways related to dysmenorrhea. The results of molecular docking showed that these differentially active components had good binding activity to target. CONCLUSION: It was preliminarily revealed that CW could treat dysmenorrhea mainly through the regulation of inflammatory reaction, relaxing smooth muscle and endocrine by curcumenone, 13-hydroxygermacrone, (+)-cuparene, caryophyllene oxide, zederone, and isocurcumenol.


Assuntos
Curcuma , Medicamentos de Ervas Chinesas , Feminino , Humanos , Ácido Acético/química , Ácido Acético/uso terapêutico , Biologia Computacional , Curcuma/química , Medicamentos de Ervas Chinesas/química , Dismenorreia/tratamento farmacológico , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Espasmo , Espectrometria de Massas em Tandem
7.
Phytochem Anal ; 33(4): 517-532, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35144310

RESUMO

INTRODUCTION: The diterpenoids are the most important active constituents that contribute to the pharmacological efficacy of Isodon serra (Maxim.) Hara. Clinical studies have revealed that diterpenoids possess multiple features, e.g. antitumour, antitubercular and anti-ischemic activities. Therefore, the identification and detection of diterpenoids may be equally important for understanding the pharmacological basis of diterpenoids and enhancing the product quality control of I. serra. OBJECTIVES: The purpose of this study was to develop a practical analysis approach of rapid characterisation using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) for the structure characterisation of the ent-kaurane diterpenoids from I. serra. METHODOLOGY: The analytical strategy was as follows: first, ent-kaurane diterpenoids were detected by a novel on-line data acquisition approach, i.e. sequential window acquisition of all theoretical fragment-ion spectra (SWATH). Second, the MS of eight ent-kaurane diterpenoids was explored, and their mass spectrum cleavage pathways were summarised and determined. Finally, the methanol extract of I. serra was studied using SWATH and identified by extracted ion chromatography (XIC). RESULTS: Compared to the traditional information-dependent acquisition (IDA) method, SWATH significantly improved the hit rate of ent-kaurane diterpenoids. With support from UHPLC separation and specific detection by tandem mass spectrometry (MS/MS), 48 ent-kaurane diterpenoids were successfully characterised and classified as ent-kaurane diterpenoids from a complex matrix. CONCLUSIONS: These combined qualitative methods were used to provide a potential approach for the characterisation of traditional Chinese medicine (TCM) and its preparations. Meanwhile, the SWATH provided a novel and reliable method for the structural characterisation of ent-kaurane diterpenoids from other complicated TCMs.


Assuntos
Diterpenos do Tipo Caurano , Diterpenos , Isodon , Cromatografia Líquida de Alta Pressão , Diterpenos/análise , Diterpenos do Tipo Caurano/análise , Isodon/química , Espectrometria de Massas em Tandem/métodos
8.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364050

RESUMO

Geo-authentic herbs refer to medicinal materials produced in a specific region with superior quality. Stephania tetrandra S. Moore (S. tetrandra) is cultivated in many provinces of China, including Anhui, Zhejiang, Fujian, Jiangxi, Hunan, Guangxi, Guangdong, Hainan, and Taiwan, among which Jiangxi is the geo-authentic origin. To explore habitat-related chemical markers of herbal medicine, an integrated chromatographic technique including gas chromatography-mass spectrometry (GC-MS), ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) combined with chemometric analysis was established. The established methods manifested that they were clearly divided into two groups according to non-authentic origins and geo-authentic origins, suggesting that the metabolites were closely related to their producing areas. A total of 70 volatile compounds and 50 non-volatile compounds were identified in S. tetrandra. Meanwhile, tetrandrine, fangchinoline, isocorydine, magnocurarine, magnoflorine, boldine, and higenamine as chemical markers were accurately quantified and suggested importance in grouping non-authentic origins and geo-authentic origins samples. The discriminatory analysis also indicated well prediction performance with an accuracy of 80%. The results showed that the multiple chromatographic and chemometric analysis technique could be used as an effective approach for discovering the chemical markers of herbal medicine to fulfill the evaluation of overall chemical consistency among samples from different producing areas.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Stephania tetrandra , Stephania tetrandra/química , Espectrometria de Massas em Tandem/métodos , Quimiometria , China , Cromatografia Líquida de Alta Pressão/métodos , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/química , Ecossistema
9.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500408

RESUMO

Bombyx batryticatus (BB) is an anticonvulsant animal medicine in traditional Chinese medicine (TCM) and acts on the central nervous system. This research aimed to study the anticonvulsant effects of different polarity fractions of extracts from BB and to explore the components conferring anticonvulsant activity. Materials and methods: Crude extracts of BB at 20 g/kg were divided into different polarity fractions (petroleum ether, chloroform, ethyl acetate, water) and were administered to groups of mice before injecting pentylenetetrazol (PTZ) to induce convulsions. The animals were placed in chambers, and their behaviors were recorded for 30 min following the injection. Latency time, percent of protection, convulsion, convulsion rate, and convulsion score were determined for these mice. The compounds present in the different fractions were analyzed, and those from the fraction that conferred anticonvulsant activity were identified by high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF MS) and molecular networking (MN). The chloroform extract fractions (B-C) clearly increased the seizure latency time and protection percentage and decreased the convulsion percentage compared to the control group. The anticonvulsant effect of other extract fractions was not significant. Our study shows that the chloroform extract fractions (B-C) of BB have a significant anticonvulsant effect. We also identified 17 compounds including lumichrome, pheophorbide A, and episyringaresinol 4'-O-beta-d-glucopyranose that were found for the first time. The results of this study may lay the groundwork for studying compounds derived from Bombyx batryticatus and their anticonvulsant effect.


Assuntos
Anticonvulsivantes , Bombyx , Camundongos , Animais , Anticonvulsivantes/farmacologia , Espectrometria de Massas em Tandem , Bombyx/química , Pentilenotetrazol , Cromatografia Líquida de Alta Pressão/métodos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
Anal Biochem ; 629: 114297, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217704

RESUMO

Genuine regional drugs have played a vital role in clinical use for a long time. There are differences in traditional Chinese medicines (TCM) from different regions based on their chemical composition. Differences in chemical composition may lead to deviations in therapeutic effects. To our knowledge, to date, there are no effective methods for distinguishing genuine regional drugs based on the differences in their chemical composition. Therefore, establishing an analytical platform for distinguishing the compounds used in TCM from various geographical locations is essential. In this work, an integrated platform based on UPLC-Q-TOF-MS/MS combined with plant metabolomics approach was established for comprehensively distinguishing genuine regional drugs. Isodon rubescens (Hemsl.) Hara, a widely used herbal medicine of China, was chosen for this study and 24 samples from four geographical locations in China were collected. A total of 60 ent-kaurane diterpenoids were tentatively identified, and then the samples from four geographical origins were distinguished using PCA (principal component analysis) and PLS-DA (partial least squares discrimination analysis). Different compounds were identified among the samples collected from the four geographical locations, and 12 of them were regarded as marker compounds responsible for the distinction. Our study highlights the essence and predictive ability of metabolomics in detecting minute differences in the same varieties of TCM samples based on the levels and compositions of their metabolites. These results showed that the analysis using UHPLC-Q-TOF-MS/MS combined with metabolomics could be applied to distinguish the geographical origins and varieties of TCM.


Assuntos
Biomarcadores/análise , Diterpenos/análise , Medicamentos de Ervas Chinesas/análise , Isodon/química , Cromatografia Líquida de Alta Pressão , Análise dos Mínimos Quadrados , Medicina Tradicional Chinesa , Metabolômica , Análise Multivariada , Análise de Componente Principal , Espectrometria de Massas em Tandem
11.
Xenobiotica ; 51(3): 355-365, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33269993

RESUMO

Gefitinib, the first approved inhibitor for oral epidermal growth factor receptor (EGFR), has been proved to be effective in non-small cell lung cancer with EGFR mutation. However, there are many metabolites of gefitinib that have not been identified in vivo. This study aims to identify the metabolites of gefitinib and its metabolic pathways in rats using ultra-high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) detector. Protein precipitation, solid-phase and ultrasonic extraction were used for the pre-treatment of plasma, urine, bile and faeces samples. In this study, a total of 28 compounds were identified in rat plasma, 29 in bile, 20 in urine and 16 in faeces. 20 new compounds were firstly reported as metabolites of gefitinib. Reduction, hydroxylation, dealkylation and dehalogenation were the major metabolic pathways in phase I. For phase II, the main pathways were sulphate and glucuronide conjugation. The fragment ions of gefitinib and its metabolites were usually generated via the fracture of C1-O bond of propoxy on the C6 position of aniline quinazoline ring. The results may be valuable and important for understanding the metabolic process of gefitinib in clinical application and drug safety.


Assuntos
Antineoplásicos/metabolismo , Gefitinibe/metabolismo , Redes e Vias Metabólicas , Animais , Bile/química , Cromatografia Líquida de Alta Pressão , Fezes/química , Plasma/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Urina/química
12.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834042

RESUMO

Ammodaucus leucotrichus is a spontaneous plant endemic of the North African region. An efficient selective pressurized liquid extraction (PLE) method was optimized to concentrate neuroprotective extracts from A. leucotrichus fruits. Green solvents were tested, namely ethanol and water, within a range of temperatures between 40 to 180 °C. Total carbohydrates and total phenolics were measured in extracts, as well as in vitro antioxidant capacity (DPPH radical scavenging), anticholinesterase (AChE) and anti-inflammatory (LOX) activities. Metabolite profiling was carried out by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-q-TOF-MS/MS), identifying 94 compounds. Multivariate analysis was performed to correlate composition with bioactivity. A remarkable effect of the temperature using water was observed: the higher temperature, the higher extraction yield, the higher total phenolic content, as well as the higher total carbohydrates content. The water extract obtained at 180 °C, 10.34 MPa and 10 min showed meaningful anti-inflammatory (IC50LOX = 39.4 µg/mL) and neuroprotective activities (IC50AChE = 55.6 µg/mL). The Principal Components Analysis (PCA) and the cluster analysis correlated these activities with the presence of carbohydrates and phenolic compounds.


Assuntos
Apiaceae/química , Metabolômica , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Avaliação de Medicamentos , Espectrometria de Massas em Tandem
13.
Anal Biochem ; 597: 113673, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32142761

RESUMO

Schaftoside is a flavone-C-glycoside isolated from Herba Desmodii Styracifolii with valuable anti-kidney stones efficacies. In this study, a six-step strategy was first developed to detect and identify the metabolites in plasma, urine, bile, feces and rat intestinal bacteria samples of healthy and model rats administrated with schaftoside using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). The number and the relative peak area of metabolites in healthy rats and model rats were compared, and it was noticed that metabolites in bio-samples of healthy and model rats both had obvious differences. A total of 28 metabolites of schaftoside in healthy rats and 30 metabolites in model rats were initially indentified. The relative peak area of the parent drug and every metabolite in model rat plasma samples were larger than those in healthy rat plasma. Those metabolites with high blood concentrations might be beneficial for the treatment of calcium oxalate stones in the kidney. The results are valuable and important for understanding the metabolic process of schaftoside in clinical application, and especially the metabolism study in calcium oxalate kidney stone model rats could provide a beneficial reference for the further search of effective substances associated with the treatment of kidney stones.


Assuntos
Oxalato de Cálcio/metabolismo , Glicosídeos/metabolismo , Cálculos Renais/química , Animais , Oxalato de Cálcio/sangue , Oxalato de Cálcio/urina , Modelos Animais de Doenças , Glicosídeos/sangue , Glicosídeos/urina , Cálculos Renais/sangue , Cálculos Renais/urina , Masculino , Ratos , Ratos Sprague-Dawley
14.
Molecules ; 25(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936367

RESUMO

Schisantherin A is an active ingredient originating from Schisandra chinensis (Turcz.) which has hepatoprotective and anti-oxidation activities. In this study, in vitro metabolisms investigated on rat liver microsomes (RLMs) and in vivo metabolisms explored on male Sprague Dawley rats of Schisantherin A were tested, respectively. The metabolites of Schisantherin A were identified using ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Based on the method, 60 metabolites were successfully identified and structurally characterized including 48 phase-I and 12 phase-II metabolites. Among the metabolites, 45 metabolites were reported for the first time. Moreover, 56 and eight metabolites were detected in urine and bile and 19 metabolites were identified in rats' plasma. It demonstrated that hepatic and extra-hepatic metabolic pathways were both involved in Schisantherin A biotransformation in rats. Five in vitro metabolites were structurally characterized for the first time. The results indicated that the metabolic pathways mainly include oxidation, reduction, methylation, and conjugation with glucuronide, taurine, glucose, and glutathione groups. This study provides a practical strategy for rapidly screening and identifying metabolites, and the results provide basic data for future pharmacological and toxicology studies of Schisantherin A and other lignin ingredients.


Assuntos
Ciclo-Octanos/análise , Ciclo-Octanos/metabolismo , Dioxóis/análise , Dioxóis/metabolismo , Avaliação Pré-Clínica de Medicamentos , Lignanas/análise , Lignanas/metabolismo , Metaboloma , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Ciclo-Octanos/química , Dioxóis/química , Íons , Lignanas/química , Masculino , Redes e Vias Metabólicas , Metabolômica , Oxirredução , Ratos Sprague-Dawley
15.
Anal Biochem ; 587: 113460, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31563442

RESUMO

Betulin, as a new type of natural food preservative, is widely used in various kinds of meat products. However, its detailed mechanism of action and metabolism have not been clarified. In this study, for further gain insight of the mechanism of betulin as a preservative, an efficient method has been applied for measuring the antioxidant capacity of betulin, based on the absorbance of the DPPH• and ABTS• radical cation. When the concentration of betulin was more than 2.0 mg/mL, the scavenging rate of ABTS and DPPH radical reached over 90%, which was equivalent to the antioxidant capacity of Trolox. It is indicated that betulin has significant DPPH and ABTS free radical scavenging ability. This should be one of the important mechanisms for betulin as a preservative. A sensitive method using UHPLC-Q-TOF-MS/MS was established to determine the metabolite profile in vivo and in vitro of betulin. 32 phase I and 2 phase II metabolites were structurally characterized. This study will provide theoretical support for the safety and effectiveness of betulin in the field of preservatives and provide theoretical basis for the further study of betulin and the other natural preservatives. This research also contributes to the development of the food industry.


Assuntos
Antioxidantes/análise , Triterpenos/análise , Cromatografia Líquida de Alta Pressão , Radicais Livres/química , Espectrometria de Massas em Tandem
16.
Biomed Chromatogr ; 33(11): e4651, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31313844

RESUMO

Lomatogonium rotatum (L.) Fries ex Nym (L. rotatum), a member of Gentianaceae, is an important mongolian medicine in China used to treat febrile diseases in liver and gallbladder. The aim of present study was to investigate the chemical constituents and metabolites of the 50% ethanol fraction of L. rotatum (50EtLR). Firstly, the extract of L. rotatum was partitioned by macroporous resin to obtain the target fraction (50EtLR), then several compounds were isolated from 50EtLR to obtained the standards for further analysis of chemical constituents of 50EtLR. Secondly, the chemical constituents of 50EtLR were characterized using the ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Finally, prototype constituents and related metabolites were analyzed after orally administerng 50EtLR to rats. As a result, a new compound, 6-O-[ß-d-xylopyranosyl-(1 → 6)-O-ß-d-glucopyranosyl]-1,4,8-trimethoxyxanthone (6) along with seven known compounds (1-5, 7 and 8) were isolated from the 50EtLR, 92 components were either unambiguously or tentatively identified. Additionally, 34 prototype constituents and 112 metabolites in rat plasma along with 32 prototype constituents and 53 metabolites in rat liver were tentatively identified. Therefore, xanthones and flavonoids were the main chemical constituents of 50EtLR and sulfation and glucuronidation are the main enzyme-induced metabolic pathways involved post-administration.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides , Gentianaceae , Espectrometria de Massas em Tandem/métodos , Xantonas , Animais , Flavonoides/análise , Flavonoides/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Extratos Vegetais/metabolismo , Ratos , Ratos Sprague-Dawley , Xantonas/análise , Xantonas/metabolismo
17.
Biomed Chromatogr ; 33(11): e4635, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31257616

RESUMO

Gynura procumbens (Lour.) Merr. is traditionally used as a raw material for making dumplings or steamed stuffed buns, and its fresh leaves are boiled with water for tea. Herein, we established an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) combined with characteristic ion filtration (CIF) strategy to rapidly screen active ingredients with antioxidant and anti-inflammatory properties in G. procumbens. This strategy involved screening the active part of G. procumbens using antioxidation and anti-inflammatory activity assays; discovering the active compounds by speculating on the active site's chemical composition by UHPLC-Q-TOF-MS/MS plus CIF; and verifying the active compounds' activities. The ethyl acetate extract (EEAF) of G. procumbens was the major active site. Eighty-one compounds were identified from the EEAF using UHPLC-Q-TOF-MS/MS plus CIF. Furthermore, polyphenols such as cynarine, isochlorogenic acids A and isochlorogenic acids C have excellent antioxidizing and anti-inflammatory activities. This study provides a practical strategy for rapid in vitro screening of the antioxidizing and anti-inflammatory activities of traditional vegetables and herbs and identification of active ingredients.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Asteraceae/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Picratos/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
18.
Phytochem Anal ; 30(3): 278-291, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30588683

RESUMO

INTRODUCTION: Citri Reticulatae Pericarpium (CRP), comprising dried pericarps of Citrus reticulata Blanco and its cultivars, is popularly used for its great medicinal and dietary values. Generally, the pericarps from C. reticulate "Chachi" ("Guangchenpi" in Chinese, GCP) is considered to have superior qualities and merit premium price compared with CRP derived from other cultivars (collectively called "Chenpi" in Chinese, CP). Since its multiple origins and derived economic adulteration, it is significant to systematically compare the chemical profiles of different CRP varieties. OBJECTIVE: The main objective of this work was to identify the chemical profiles of CRP from different varieties and find out potential chemical markers for differentiating GCP and CP. METHODS: In the present study, a total of 42 CRP samples from 10 varieties (including GCP and CP) were analysed by ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) for chemical profiling. Obtained MS/MS data were further employed in multivariate statistical methods to screen the main compounds which contributed to the characterisation and classification of CRP. RESULTS: As a result, 73 compounds (mainly flavonoids) were identified or tentatively characterised in these CRP samples. Based on the obtained chemical profiles data, GCP and CP samples could be easily discriminated from each other by statistical analyses. Moreover, seven compounds were selected as having the most discriminating features which contributed to the classification of CRP. CONCLUSION: This work obtains a better understanding of the chemical profiles of different CRP varieties and provides a practical strategy for the authentication of GCP and CP.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citrus/classificação , Espectrometria de Massas em Tandem/métodos , Citrus/química , Análise por Conglomerados , Medicamentos de Ervas Chinesas/química , Análise Multivariada , Análise de Componente Principal , Especificidade da Espécie
19.
Molecules ; 24(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766221

RESUMO

Semiliquidambar cathayensis Chang was a traditional medicinal plant and used to treat rheumatism arthritis and rheumatic arthritis for centuries in China with no scientific validation, while only 15 components were reported. Thus, a rapid, efficient, and precise method based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was applied in both positive- and negative-ion modes to rapidly analysis the main chemical compositions in S. cathayensis for the first time. Finally, a total of 85 chemical compositions, including 35 alkaloids, 12 flavonoids, 7 terpenoids, 5 phenylpropanoids, 9 fatty acids, 7 cyclic peptides, and 10 others were identified or tentatively characterized in the roots of S. cathayensis based on the accurate mass within 5 ppm error. Moreover, alkaloid, flavonoid, phenylpropanoid, and cyclic peptide were reported from S. cathayensis for the first time. This rapid and sensitive method was highly useful to comprehend the chemical compositions and will provide scientific basis for further study on the material basis, mechanism and clinical application of S. cathayensis roots.


Assuntos
Cromatografia Líquida de Alta Pressão , Hamamelidaceae/química , Extratos Vegetais/análise , Extratos Vegetais/química , Raízes de Plantas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estrutura Molecular , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química
20.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340434

RESUMO

Eupatorin is the major bioactive component of Java tea (Orthosiphon stamineus), exhibiting strong anticancer and anti-inflammatory activities. However, no research on the metabolism of eupatorin has been reported to date. In the present study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) combined with an efficient online data acquisition and a multiple data processing method were developed for metabolite identification in vivo (rat plasma, bile, urine and feces) and in vitro (rat liver microsomes and intestinal flora). A total of 51 metabolites in vivo, 60 metabolites in vitro were structurally characterized. The loss of CH2, CH2O, O, CO, oxidation, methylation, glucuronidation, sulfate conjugation, N-acetylation, hydrogenation, ketone formation, glycine conjugation, glutamine conjugation and glucose conjugation were the main metabolic pathways of eupatorin. This was the first identification of metabolites of eupatorin in vivo and in vitro and it will provide reference and valuable evidence for further development of new pharmaceuticals and pharmacological mechanisms.


Assuntos
Flavonoides/farmacocinética , Glicoconjugados/isolamento & purificação , Microssomos Hepáticos/metabolismo , Orthosiphon/química , Acetilação , Animais , Bile/química , Biotransformação , Fezes/química , Flavonoides/sangue , Flavonoides/urina , Microbioma Gastrointestinal/fisiologia , Glicoconjugados/metabolismo , Hidrogenação , Masculino , Metilação , Oxirredução , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA