Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(20): e2307946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38269752

RESUMO

Piezo-catalysis emerges as an efficient, safe, and affordable strategy for removing hazardous substances from aquatic environments. Here, the BiFeO3@In2Se3 heterojunction demonstrates remarkable prowess as a piezo-catalyst, enabling the high-efficiency removal of uranium (U) from U(VI)-containing water. A total U(VI) removal efficiency of 94.6% can be achieved under ultrasonic vibration without any sacrificial agents. During the entire catalytic process, piezo-induced electrons, hydroxyl radicals, and superoxide radicals play important roles in U(VI) removal, while the generated H2O2 is responsive to the transformation of soluble U(VI) into insoluble (UO2)O2•2H2O and UO3. Furthermore, auxiliary illumination can accelerate the increase of free charges, enabling the piezo-catalyst to retain more charges. This leads to an improved U(VI) removal efficiency of 98.8% and a significantly increased reaction rate constant. This study offers a comprehensive analysis of the fabrication of high-efficiency piezo-catalysts in the removal or extraction of U(VI) from U(VI)-containing water.

2.
Photochem Photobiol Sci ; 23(7): 1265-1278, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789913

RESUMO

Knowledge of long-term time trends of solar ultraviolet (UV) radiation on ground level is of high scientific interest. For this purpose, precise measurements over a long time are necessary. One of the challenges solar UV monitoring faces is the permanent and gap-free data collection over several decades. Data gaps hamper the formation and comparison of monthly or annual means, and, in the worst case, lead to incorrect conclusions in further data evaluation and trend analysis of UV data. For estimating data to fill gaps in long-term UV data series (daily radiant exposure and highest daily irradiance), we developed three statistical imputation methods: a model-based imputation, considering actual local solar radiation conditions using predictors correlated to the local UV values in an empirical model; an average-based imputation based on a statistical approach of averaging available local UV measurement data without predictors; and a mixture of these two imputation methods. A detailed validation demonstrates the superiority of the model-based imputation method. The combined method can be considered the best one in practice. Furthermore, it has been shown that the model-based imputation method can be used as an useful tool to identify systematic errors at and between calibration steps in long-term erythemal UV data series.

3.
Photochem Photobiol Sci ; 23(4): 651-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430372

RESUMO

Manufacturing high-performance and reusable materials from radioactive uranium-containing wastewater remains a significant challenge. Herein, a supramolecular self-assembly strategy was proposed, using melamine and cyanuric acid as precursors and using intermolecular hydrogen bond force to form carbon nitride (CN-D) in different solvents through a single thermal polymerization strategy. Supramolecular self-assembly method is a promising strategy to synthesize a novel carbon nitride with molecular regulatory properties. In addition, 98% of U(VI) in wastewater can be removed by using CN-D for 60 min under visible light. After five cycles of recycling, more than 95% of U(VI) can still be reduced, indicating that it has good recyclability and reusability. This study not only provides an efficient photocatalytic method of uranium reduction, but also provides a new method for self-assembly synthesis.

4.
Photochem Photobiol Sci ; 23(7): 1279-1294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762827

RESUMO

This study evaluated the health-related weighted ultraviolet radiation (UVR) due to the total ozone content (TOC) and the aerosol optical depth (AOD) changes. Clear-sky Ultraviolet Index (UVI), daily doses, and exposure times for erythema induction (Dery and Tery) and vitamin D synthesis (DvitD and TvitD) were computed by a radiative transfer estimator. TOC and AOD data were provided by six Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6). For projections, we consider four Shared Socioeconomic Pathways scenarios-SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)-and two time-slices (near: 2041-2060 and far future: 2081-2100). UVR projections showed pronounced changes for the summer hemispheres in the far future. TOC increases in mid- and high latitudes of the Southern Hemisphere caused decreases in UVR at the summer solstice. However, projections did not indicate sun-safe exposure conditions in South America, Australia, and Southern Africa. On the contrary, exposure around solar noon from 10 to 20 min will still be sufficient to induce erythema in skin type III individuals throughout this century. In southern Argentina and Chile, the UVR insufficiency for vitamin D synthesis at solar noon in skin type III remains the same during this century at the winter solstice. In the Northern Hemisphere, UVI and Dery at the summer solstice should remain high (UVI ≥ 8; Dery ~ 7.0 kJ m-2) in highly populated locations. Above 45 °N, UVR levels cannot be enough to synthesize vitamin D in skin type III during the boreal winter. Our results show that climate change will affect human health through excess or lack of solar UVR availability.


Assuntos
Aerossóis , Ozônio , Raios Ultravioleta , Aerossóis/química , Ozônio/química , Ozônio/análise , Humanos , América do Sul
5.
J Environ Manage ; 353: 120157, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295639

RESUMO

Nanoscale zerovalent iron (Fe0)-based materials have been demonstrated to be a effective method for the U(VI) removal. However, limited research has been conducted on the long-term immobilization efficiency and mechanism of Fe0-based materials for U(VI), which are essential for achieving safe handling and disposal of U(VI) on a large scale. In this study, the prepared carboxymethyl cellulose (CMC) and sulfurization dual stabilized Fe0 (CMC-Fe0/FeS) exhibited excellent long-term immobilization performances for U(VI) under both anoxic and oxic conditions, with the immobilization efficiencies were respectively reached over 98.0 % and 94.8 % after 180 days of aging. Most importantly, different from the immobilization mechanisms of the fresh CMC-Fe0/FeS for U(VI) (the adsorption effect of -COOH and -OH groups, coordination effect with sulfur species, as well as reduction effect of Fe0), the re-mobilized U(VI) were finally re-immobilized by the formed FeOOH and Fe3O4 on the aged CMC-Fe0/FeS. Under anoxic conditions, more Fe3O4 was produced, which may be the main reason for the long-term immobilization U(VI). Under oxic conditions, the production of Fe3O4 and FeOOH were relatively high, which both played significant roles in re-immobilizing U(VI) through surface complexation, reduction and incorporation effects.


Assuntos
Urânio , Carboximetilcelulose Sódica , Ferro , Adsorção
6.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257321

RESUMO

Herein, a zeolitic imidazole framework (ZIF-67) composite was prepared by a rapid, simple and inexpensive situ hybridization technique applying polyurethane sponge (PU) as support, which was designated as ZIF-67-PU. The ZIF-67 nanoparticle was successfully supported on the surface of sponge skeletons mainly through electrostatic attraction as well as probable π-π stacking interactions with PAM modification of the sponge. The resultant ZIF-67-PU exhibited a remarkably enhanced U(VI) elimination capacity of 150.86 mg∙g-1 on the basis of the Langmuir isotherm model, in comparison to pristine sponge. Additionally, the mechanism for U(VI) elimination was mainly achieved through the complex reaction between C-N(H)/-OH groups in ZIF-67 and U(VI), based on XPS investigations. ZIF-67-PU represents a simple, feasible and low-cost disposal option for preparing ZIF-coated sponges of any shape that can enhance the U(VI) elimination capacity. Furthermore, this approach can be widely applied to the preparation of various kinds of MOF-sponges through this situ hybridization technique.

7.
Environ Sci Technol ; 57(19): 7537-7546, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37133831

RESUMO

The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have confirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionate. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2- (dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1-one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC-and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.


Assuntos
Citocromos , Shewanella , Oxirredução , Transporte de Elétrons , Shewanella/química
8.
Environ Res ; 231(Pt 2): 116160, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209988

RESUMO

Practical adsorbents with high efficiency are essential to effectively treating wastewater. Herein, a novel porous uranium adsorbent (PA-HCP) having a considerable amount of amine and phosphoryl groups was designed and synthesized by grafting polyethyleneimine (PEI) on a hyper-cross-linked fluorene-9-bisphenol skeleton via phosphoramidate linkers. Furthermore, it was used to treat uranium contamination in the environment. PA-HCP exhibited a large specific surface area (up to 124 m2/g) and a pore diameter of 2.5 nm. Batch uranium adsorptions on PA-HCP were investigated methodically. PA-HCP demonstrated a uranium sorption capacity of >300 mg/g in the pH range of 4-10 (C0 = 60 mg/L, T = 298.15 K), with its maximum capacity reaching 573.51 mg/g at pH = 7. The uranium sorption process obeyed the pseudo-second-order model and fitted well with the Langmuir isothermal. In the thermodynamic experiments, uranium sorption on PA-HCP was revealed to be an endothermic, spontaneous process. Even in the presence of competing metal ions, PA-HCP exhibited excellent sorption selectivity for uranium. Additionally, excellent recyclability can be achieved after six cycles. Based on FT-IR and XPS measurements, both the PO and -NH2 (and/or -NH-) groups on PA-HCP contributed to efficient uranium adsorption as a result of the strong coordination between these groups and uranium. Furthermore, the high hydrophilicity of the grafted PEI improved the dispersion of the adsorbents in water and facilitated uranium sorption. These findings suggest that PA-HCP can be used as an efficient and economical sorbent to remove U(VI) from wastewater.


Assuntos
Polímeros , Urânio , Água , Águas Residuárias , Polietilenoimina , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Concentração de Íons de Hidrogênio
9.
J Environ Manage ; 344: 118417, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352631

RESUMO

Uranium-containing wastewater is a common by-product of uranium mining. Phosphate and phosphate minerals can interact with uranyl ions [U(VI)], impeding the migration of these ions by forming relatively stable uranium-containing crystalline phase(s). In this study, hydroxyapatite microtubes (HAP-T) were fabricated to sequester uranyl ions from simulated radioactive wastewater. HAP-T had excellent adsorption and stability properties; over 98.76% of U(VI) could be sequestrated by 0.25 g/L HAP-T within 5 min at pH = 4.0. The isotherms and kinetics data could be suitably reflected by the Freundlich and the pseudo second-order kinetic models, respectively. The maximum adsorption capacity of HAP-T was 356.42 mg/g. The adsorption ability of HAP-T for U(VI) was inhibited when Mg2+ or SO42- ions or fulvic acid (FA) substances existed in the simulated radioactive wastewater. The inhibition by FA was attributed to its negative charges, which caused competition between FA and HAP-T for uranium sequestration. The primary mechanisms of U(VI) sequestration by HAP-T were electrostatic interactions and surface complexation. The effectiveness of HAP-T, HAP-B (bio-hydroxyapatite synthesized from fish bone), and HAP-C (commercially available synthesized hydroxyapatite) for uranium immobilization was compared; HAP-T was more effective than HAP-B or HAP-C in immobilizing uranium. HAP-T, which has a micron-sized tubular structure, is likely less mobile in groundwater than are HAP-B and HAP-C, which have nanoscale granular structures. In conclusion, HAP-T can be used to sequester and immobilize uranyl ions.


Assuntos
Durapatita , Urânio , Durapatita/química , Urânio/análise , Águas Residuárias , Adsorção , Cinética
10.
J Environ Manage ; 342: 118088, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201389

RESUMO

Nano zero-valent manganese (nZVMn) is theoretically expected to exhibit high reducibility and adsorption capacity, yet its feasibility, performance, and mechanism for reducing and adsorbing hexavalent uranium (U(VI)) from wastewater remain unclear. In this study, nZVMn was prepared via borohydride reduction, and its behaviors about reduction and adsorption of U(VI), as well as the underlying mechanism, were investigated. Results indicated that nZVMn exhibited a maximum U(VI) adsorption capacity of 625.3 mg/g at a pH of 6 and an adsorbent dosage of 1 g/L, and the co-existing ions (K+, Na+, Mg2+, Cd2+, Pb2+, Tl+, Cl-) at studied range had little interference on U(VI) adsorption. Furthermore, nZVMn effectively removed U(VI) from rare-earth ore leachate at a dosage of 1.5 g/L, resulting in a U(VI) concentration of lower than 0.017 mg/L in the effluent. Comparative tests demonstrated the superiority of nZVMn over other manganese oxides (Mn2O3 and Mn3O4). Characterization analyses, including X-ray diffraction and depth profiling X-ray photoelectron spectroscopy, combined with density functional theory calculation revealed that the reaction mechanism of U(VI) using nZVMn involved reduction, surface complexation, hydrolysis precipitation, and electrostatic attraction. This study provides a new alternative for efficient removal of U(VI) from wastewater and improves the understanding of the interaction between nZVMn and U(VI).


Assuntos
Manganês , Urânio , Manganês/análise , Urânio/análise , Águas Residuárias , Adsorção , Água/química , Íons , Concentração de Íons de Hidrogênio , Cinética
11.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985426

RESUMO

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

12.
Environ Sci Technol ; 56(17): 12702-12712, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35980135

RESUMO

Uranium mining and nuclear fuel production have led to significant U contamination. Past studies have focused on the bioreduction of soluble U(VI) to insoluble U(IV) as a remediation method. However, U(IV) is susceptible to reoxidation and remobilization when conditions change. Here, we demonstrate that a combination of adsorption and bioreduction of U(VI) in the presence of an organic ligand (siderophore desferrioxamine B, DFOB) and the Fe-rich clay mineral nontronite partially alleviated this problem. DFOB greatly facilitated U(VI) adsorption into the interlayer of nontronite as a stable U(VI)-DFOB complex. This complex was likely reduced by bioreduction intermediates such as the Fe(II)-DFOB complex and/or through electron transfer within a ternary Fe(II)-DFOB-U(VI) complex. Bioreduction with DFOB alone resulted in a mobile aqueous U(IV)-DFOB complex, but in the presence of both DFOB and nontronite U(IV) was sequestered into a solid. These results provide novel insights into the mechanisms of U(VI) bioreduction and the stability of U and have important implications for understanding U biogeochemistry in the environment and for developing a sustainable U remediation approach.


Assuntos
Sideróforos , Urânio , Adsorção , Argila , Compostos Férricos , Compostos Ferrosos , Ferro , Minerais , Oxirredução
13.
Luminescence ; 37(6): 1001-1008, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35412020

RESUMO

Selective fluorometric detection and determination of uranium ions is provided here using a novel fluorescent reagent, namely (E)-4-([4-hydroxynaphthalen-1-yl]diazenyl)-N-(5-methyleisoxazol-3-yl) benzenesulfonamide (UVI reagent). The UVI reagent offers a selective fluorescence enhancement behaviour at emission wavelength = 557 nm. The parameters affecting fluorometric detection of uranium ions, such as the pH, solvent type, ligand concentration, interaction time, and interfering ions, were investigated and adjusted. The proposed UVI reagent can detect and determine uranium ions even at low concentrations, for which the obtained limit of detection was 0.1 ppm. Additionally, this proposed determination protocol was successfully used to detect, monitor, and determine uranium ions in actual water samples.


Assuntos
Urânio , Íons , Espectrometria de Fluorescência , Sulfonamidas , Água , Benzenossulfonamidas
14.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080286

RESUMO

An analytical method for uranium determination in waters, wine and honey was developed based on solid phase extraction (SPE) with new ion imprinted polymer. The sorbent was synthesized using 4-(2-Pyridylazo)resorcinol (PAR) as a ligand via dispersion polymerization and characterized by SEM for morphology and shape of polymer particles and nitrogen adsorption-desorption studies for their surface area and total pore volume. The kinetic experiments performed showed that the rate limiting step is the complexation between U(VI) ions and chelating ligand PAR incorporated in the polymer matrix. Investigations by Freundlich and Langmuir adsorption isotherm models showed that sorption process occurs as a surface monolayer on homogeneous sites. The high extraction efficiency of synthesized sorbent toward U(VI) allows its application for SPE determination of U(VI) in wine and honey without preliminary sample digestion using ICP-OES as measurement method. The recoveries achieved varied: (i) between 88 to 95% for surface and ground waters, (ii) between 90-96% for 5% aqueous solution of honey, (iii) between 86-93% for different types of wine. The validity and versatility of proposed analytical methods were confirmed by parallel measurement of U in water samples using Alpha spectrometry and U analysis in wine and honey after sample digestion and ICP-MS measurement. The analytical procedure proposed for U determination in surface waters is characterized with low limits of detection/quantification and good reproducibility ensuring its application for routine control in national monitoring of surface waters. The application of proposed method for honey and wine samples analysis provides data for U content in traditional Bulgarian products.


Assuntos
Mel , Urânio , Vinho , Adsorção , Mel/análise , Íons/análise , Ligantes , Polímeros/química , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos , Urânio/química , Vinho/análise
15.
J Environ Sci (China) ; 122: 1-13, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35717075

RESUMO

For the continuous utilization of nuclear energy and efficient control of radioactive pollution, low-cost materials with high efficient U(VI) removal are of great importance. In this study, low temperature plasma method was applied for the successful modification of O-phosphorylethanolamine (O-PEA) on the porous carbon materials. The produced materials (Cafe/O-PEA) could adsorb U(VI) efficiently with the maximum sorption capacity of 648.54 mg/g at 1 hr, T=298 K, and pH=6.0, much higher than those of most carbon-based composites. U(VI) sorption was mainly controlled by strong surface complexation. From FTIR, SEM-EDS and XPS analyses, the sorption of U(VI) was related to the complexation with -NH2, phosphate and -OH groups on Cafe/O-PEA. The low temperature plasma method was an efficient, environmentally friendly and low-cost method for surface modification of materials for the effective enrichment of U(VI) from aqueous solutions.


Assuntos
Carbono , Urânio , Adsorção , Café , Fosfatos , Porosidade , Temperatura
16.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34814117

RESUMO

In this work, the efficient extraction of uranium in solution using Al2O3-SiO2-T was reported. Kinetics and isotherm models indicated that the removal process of uranium on Al2O3-SiO2-T accorded with pseudo-second-order kinetic model and Langmuir isotherm model, which showed that the adsorption process was a uniform mono-layer chemical behavior. The maximum adsorption capacity of Al2O3-SiO2-T reached 738.7 mg g-1, which was higher than AlNaO6Si2(349.8 mg g-1) and Al2O3-SiO2-NT (453.1 mg g-1), indicating that the addition of template could effectively improve the adsorption performance of Al2O3-SiO2to uranium. Even after five cycles of adsorption-desorption, the removal percentage of uranium on Al2O3-SiO2-T remained 96%. Besides, the extraction efficiency of uranium on Al2O3-SiO2-T was 72.5% in simulated seawater, which suggested that the Al2O3-SiO2-T was expected to be used for uranium extraction from seawater. Further, the interaction mechanism between Al2O3-SiO2-T and uranium species was studied. The results showed that the electrostatic interaction and complexation played key roles in the adsorption process of Al2O3-SiO2-T to uranium.

17.
Environ Sci Technol ; 55(8): 4597-4606, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33755437

RESUMO

Geological disposal is the globally preferred long-term solution for higher activity radioactive wastes (HAW) including intermediate level waste (ILW). In a cementitious disposal system, cellulosic waste items present in ILW may undergo alkaline hydrolysis, producing significant quantities of isosaccharinic acid (ISA), a chelating agent for radionuclides. Although microbial degradation of ISA has been demonstrated, its impact upon the fate of radionuclides in a geological disposal facility (GDF) is a topic of ongoing research. This study investigates the fate of U(VI) in pH-neutral, anoxic, microbial enrichment cultures, approaching conditions similar to the far field of a GDF, containing ISA as the sole carbon source, and elevated phosphate concentrations, incubated both (i) under fermentation and (ii) Fe(III)-reducing conditions. In the ISA-fermentation experiment, U(VI) was precipitated as insoluble U(VI)-phosphates, whereas under Fe(III)-reducing conditions, the majority of the uranium was precipitated as reduced U(IV)-phosphates, presumably formed via enzymatic reduction mediated by metal-reducing bacteria, including Geobacter species. Overall, this suggests the establishment of a microbially mediated "bio-barrier" extending into the far field geosphere surrounding a GDF is possible and this biobarrier has the potential to evolve in response to GDF evolution and can have a controlling impact on the fate of radionuclides.


Assuntos
Urânio , Biomineralização , Compostos Férricos , Oxirredução , Fosfatos , Açúcares Ácidos
18.
Sensors (Basel) ; 21(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833842

RESUMO

As outdoor activities are necessary for maintaining our health, research interest in environmental conditions such as the weather, atmosphere, and ultraviolet (UV) radiation is increasing. In particular, UV radiation, which can benefit or harm the human body depending on the degree of exposure, is recognized as an essential environmental factor that needs to be identified. However, unlike the weather and atmospheric conditions, which can be identified to some extent by the naked eye, UV radiation corresponds to wavelength bands that humans cannot recognize; hence, the intensity of UV radiation cannot be measured. Recently, although devices and sensors that can measure UV radiation have been launched, it is very difficult for ordinary users to acquire ambient UV radiation information directly because of the cost and inconvenience caused by operating separate devices. Herein, a deep neural network (DNN)-based ultraviolet index (UVI) calculation method is proposed using representative color information of sun object images. First, Mask-region-based convolutional neural networks (R-CNN) are applied to sky images to extract sun object regions and then detect the representative color of the sun object regions. Then, a deep learning model is constructed to calculate the UVI by inputting RGB color values, which are representative colors detected later along with the altitude angle and azimuth of the sun at that time. After selecting each day of spring and autumn, the performance of the proposed method was tested, and it was confirmed that accurate UVI could be calculated within a range of mean absolute error of 0.3.


Assuntos
Raios Ultravioleta , Tempo (Meteorologia) , Clima , Humanos , Redes Neurais de Computação , Estações do Ano
19.
Sensors (Basel) ; 21(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572393

RESUMO

Ultraviolet rays are closely related with human health and, recently, optimum exposure to the UV rays has been recommended, with growing importance being placed on correct UV information. However, many countries provide UV information services at a local level, which makes it impossible for individuals to acquire user-based, accurate UV information unless individuals operate UV measurement devices with expertise on the relevant field for interpretation of the measurement results. There is a limit in measuring ultraviolet rays' information by the users at their respective locations. Research about how to utilize mobile devices such as smartphones to overcome such limitation is also lacking. This paper proposes a mobile deep learning system that calculates UVI based on the illuminance values at the user's location obtained with mobile devices' help. The proposed method analyzed the correlation between illuminance and UVI based on the natural light DB collected through the actual measurements, and the deep learning model's data set was extracted. After the selection of the input variables to calculate the correct UVI, the deep learning model based on the TensorFlow set with the optimum number of layers and number of nodes was designed and implemented, and learning was executed via the data set. After the data set was converted to the mobile deep learning model to operate under the mobile environment, the converted data were loaded on the mobile device. The proposed method enabled providing UV information at the user's location through a mobile device on which the illuminance sensors were loaded even in the environment without UVI measuring equipment. The comparison of the experiment results with the reference device (spectrometer) proved that the proposed method could provide UV information with an accuracy of 90-95% in the summers, as well as in winters.

20.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921392

RESUMO

With the aim to find new efficient extractants for recovery of f-block elements from processing wastes of different origin, we have compared a series of phosphoryl-containing podands, including (2-(diphenylphosphorylmethoxy)phenyl)diphenylphosphine oxide 1 and its analogues 5-7, where the ArP(O)Ph2 group of phosphine oxide type is replaced by phosphonic fragments. Quantum-chemical modelling of the structures of phosphoryl-containing podands 1 and 5-7 has been performed, which was later confirmed by the data of X-ray diffraction. The features of extraction of nitric acid, as well as U(VI), Th(IV), Nd(III), and Ho(III) with compounds 1 and 5-7 from nitric acid media into 1,2-dichloroethane have been studied. The compositions of extracted complexes have been determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA