Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38921551

RESUMO

In this research, the chemical compositions of various extracts obtained from Ulva lactuca, a type of green seaweed collected from the Nador lagoon in the northern region of Morocco, were compared. Their antioxidant and anti-diabetic properties were also studied. Using GC-MS technology, the fatty acid content of the samples was analyzed, revealing that palmitic acid, eicosenoic acid, and linoleic acid were the most abundant unsaturated fatty acids present in all samples. The HPLC analysis indicated that sinapic acid, naringin, rutin, quercetin, cinnamic acid, salicylic acid, apigenin, flavone, and flavanone were the most prevalent phenolic compounds. The aqueous extract obtained by maceration showed high levels of polyphenols and flavonoids, with values of 379.67 ± 0.09 mg GAE/g and 212.11 ± 0.11 mg QE/g, respectively. This extract also exhibited an impressive ability to scavenge DPPH radicals, as indicated by its IC50 value of 0.095 ± 0.12 mg/mL. Additionally, the methanolic extract obtained using the Soxhlet method demonstrated antioxidant properties by preventing ß-carotene discoloration, with an IC50 of 0.087 ± 0.14 mg/mL. Results from in-vitro studies showed that extracts from U. lactuca were able to significantly inhibit the enzymatic activity of α-amylase and α-glucosidase. Among the various extracts, methanolic extract (S) has been identified as the most potent inhibitor, exhibiting a statistically similar effect to that of acarbose. Furthermore, molecular docking models were used to evaluate the interaction between the primary phytochemicals found in these extracts and the human pancreatic α-amylase and α-glucosidase enzymes. These findings suggest that U. lactuca extracts contain bioactive substances that are capable of reducing enzyme activity more effectively than the commercially available drug, acarbose.


Assuntos
Antioxidantes , Hipoglicemiantes , Compostos Fitoquímicos , Extratos Vegetais , Ulva , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Ulva/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Marrocos , Humanos , Cromatografia Líquida de Alta Pressão , Polifenóis/farmacologia , Polifenóis/química , Flavonoides/farmacologia , Flavonoides/química , Algas Comestíveis
2.
J Sci Food Agric ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212113

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) of healthy donors improves ulcerative colitis (UC) patients by restoring the balance of the gut microbiota. However, donors vary in microbial diversity and composition, often resulting in weak or even ineffective FMT. Improving the efficacy of FMT through combination treatment has become a promising strategy. Ulva lactuca polysaccharides (ULP) have been found to benefit host health by regulating gut microbiota. The effect of the combination of ULP and FMT in ameliorating UC has not yet been evaluated. RESULTS: The present study found that supplementation with ULP combined with FMT showed better effects in ameliorating UC than supplementation with FMT alone. Results suggested that FMT or ULP combined with FMT alleviated the symptoms of UC in mice, as evidenced by prevention of body weight loss, improvement of disease activity index and protection of the intestinal mucus. Notably, ULP in combination with FMT was more effective than FMT in reducing levels of cytokines and related inflammatory enzymes. In addition, ULP combined with FMT effectively restored the dysbiosis induced by dextran sulfate sodium (DSS) and further enriched probiotics (such as Bifidobacterium). The production of short-chain fatty acids, especially acetic acid, was also significantly enriched by ULP combined with FMT. CONCLUSION: Supplementation of ULP combined with FMT could significantly ameliorate DSS-induced colitis in mice by inhibiting inflammation and restoring dysbiosis of gut microbiota. These results suggested that ULP combined with FMT has potential application in ameliorating UC. © 2024 Society of Chemical Industry.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38890812

RESUMO

Ulva lactuca, a green seaweed, may be an alternative source of nutrients and bioactive compounds for weaned piglets. However, it has a recalcitrant cell wall rich in a sulphated polysaccharide - ulvan - that is indigestible to monogastrics. The objective of this study was to evaluate the effect of dietary incorporation of 7% U. lactuca, combined with carbohydrases supplementation (commercial carbohydrase mixture or recombinant ulvan lyase), on growth performance, nutrient digestibility and gut health parameters (morphology and microbiota) of weaned piglets. The experiment was conducted over 14 days using 40 weaned piglets randomly allocated to one of four experimental diets: a control diet based on wheat-maize-soybean meal, a diet with 7% U. lactuca replacing the control diet (UL), a diet with UL supplemented with 0.005% Rovabio® Excel AP, and a diet with UL supplemented with 0.01% of a recombinant ulvan lyase. The dietary treatments had no major effects on growth performance, nitrogen balance and gut content variables, as well as histological measurements. Contrarily, dry matter and organic matter digestibility decreased with dietary seaweed inclusion, while hemicellulose digestibility increased, suggesting a high fermentability of this cell wall fraction independently of carbohydrases supplementation. Some beneficial microbial populations increased as a consequence of enzymatic supplementation (e.g., Prevotella), while seaweed diets as a whole led to an increased abundance of Shuttleworthia, Anaeroplasma and Lachnospiraceae_NK3A20_group, all related with a healthier gut. It also decreased Lactobacillus when compared to controls, which is possibly related to increased bioavailability of seaweed zinc. This study indicates that, under these experimental conditions, up to 7% dietary U. lactuca has no detrimental effect on piglet growth, despite decreasing acid detergent fibre digestibility. Carbohydrases supplementation of Ulva diets is not required at this incorporation level.

4.
Physiol Mol Biol Plants ; 30(4): 605-618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737317

RESUMO

In our study on the effect of cadmium (Cd) toxicity (200 µM) on the growth of Sorghum bicolor (L.) Moench plants, cultivated with arbuscular mycorrhizal fungi (AMF) (Glomus intraradices) and/or under seaweed treatment (3% Ulva lactuca extract) (U. lactuca), we found that AMF increased the tolerance of sorghum to cadmium stress, either alone or in combination with the seaweed treatment. Morphological parameters were higher in these two culture conditions, with increased chlorophyll content. AMF reduced Cd accumulation in roots and inhibited its translocation to the aerial part, while seaweed treatment alone significantly increased Cd accumulation in leaves and roots without affecting plant growth compared to stressed witnesses. Treatment with AMF and/or U. lactuca attenuated oxidative stress, measured by activation of superoxide dismutase, and resulted in a significant decrease in malondialdehyde and superoxide ions (O2-) in treated plants. Furthermore, it induced significant alterations in carbon and nitrogen metabolic pathways, with a significant increase in the activity of enzymes such as glutamine synthetase, glutamate synthase (GOGAT), glutamate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase and isocitrate dehydrogenase in the leaves of each treated plant. These results confirm that AMF, U. lactuca algae extract and their combination can improve the biochemical parameters of sorghum under Cd stress, through modification of the antioxidant response on one hand, and improved nitrogen absorption and assimilation efficiency on the other.

5.
BMC Microbiol ; 23(1): 106, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072731

RESUMO

Various antibiotics are available, including gentamicin, chloramphenicol, ampicillin, amoxicillin, and streptomycin, but they have some restrictions. Many microorganisms are resistant to these medications. A new antimicrobial source must be found or developed to solve this issue. Inhere, extract from seaweeds Ulva lactuca was investigated for its antibacterial activity using a well diffusion assay against Klebsiella pneumoniae, and a promising inhibition zone diameter was recorded to be 14.04 mm. The biochemical structure of the antibacterial compound was determined via GC-MS and FTIR analysis. Also, a micro-dilution assay was used to calculate the minimum concentration that makes inhibition (MIC) to be 1.25 mg/ml from U. extract reliable to prevent the visibility of any bacterial growth, this was followed by examining the antibacterial effect of U. Lactuca methanolic extract alone and the synergetic effect of U. Lactuca methanolic extract in combination with two different antibiotics (gentamicin and chloramphenicol). This was assayed by the agar well diffusion method to achieve promising and strong inhibiting power against K. pneumoniae. It was deduced that the maximum synergism could be achieved by adding 2.5 mg/ml of Ulva methanolic extract to gentamicin (4 µg/ml), and the results were illustrated obviously via transmission electron microscope in which severe morphological deteriorations were experienced by the treated cells. From this study, we can conclude that U. lactucae extract has the power to aid antibiotics in reducing the growth of pathogenic K. pneumoniae.


Assuntos
Antibacterianos , Ulva , Antibacterianos/química , Ulva/química , Klebsiella pneumoniae , Metanol , Testes de Sensibilidade Microbiana , Cloranfenicol/farmacologia , Gentamicinas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Mar Drugs ; 22(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248655

RESUMO

Marine algal extracts exhibit a potent inhibitory effect against several enveloped and non-enveloped viruses. The infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has several adverse effects, including an increased mortality rate. The anti-COVID-19 agents are still limited; this issue requires exploring novel, effective anti-SARS-CoV-2 therapeutic approaches. This study investigated the antiviral activity of an aqueous extract of Ulva lactuca, which was collected from the Gulf of Suez, Egypt. The aqueous extract of Ulva lactuca was characterized by high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX) analyses. According to the HPLC analysis, the extract comprises several sugars, mostly rhamnose (32.88%). The FTIR spectra showed numerous bands related to the functional groups. EDX analysis confirmed the presence of different elements, such as oxygen (O), carbon (C), sulfur (S), magnesium (Mg), potassium (K), calcium (Ca), and sodium (Na), with different concentrations. The aqueous extract of U. lactuca (0.0312 mg/mL) exhibited potent anti-SARS-CoV-2 activity via virucidal activity, inhibition of viral replication, and interference with viral adsorption (% inhibitions of 64%, 33.3%, and 31.1%, respectively). Consequently, ulvan could be a promising compound for preclinical study in the drug development process to combat SARS-CoV-2.


Assuntos
Produtos Biológicos , COVID-19 , Algas Comestíveis , Ulva , SARS-CoV-2 , Antivirais/farmacologia
7.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687153

RESUMO

Bacterial pathogens cause pain and death, add significantly to the expense of healthcare globally, and pose a serious concern in many aspects of daily life. Additionally, they raise significant issues in other industries, including pharmaceuticals, clothing, and food packaging. Due to their unique properties, a great deal of attention has been given to biogenic metal nanoparticles, nanocomposites, and their applications against pathogenic bacteria. This study is focused on biogenic silver and copper nanoparticles and their composites (UL/Ag2 O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs) produced by the marine green alga Ulva lactuca. The characterization of biogenic nanoparticles UL/Ag2 O-NPS and Ul/CuO-NPs and their composites Ul/Ag/Cu-NCMs has been accomplished by FT-IR, SEM, TEM, EDS, XRD, and the zeta potential. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) experiments were conducted to prove antibacterial activity against both Gram-positive and Gram-negative bacteria and anti-biofilm. The FTIR spectroscopy results indicate the exiting band at 1633 cm-1, which represents N-H stretching in nanocomposites, with a small shift in both copper and silver nanoparticles, which is responsible for the bio-reduction of nanoparticles. The TEM image reveals that the Ul/Ag/Cu-NCMs were hexagonal, and the size distribution ranged from 10 to 35 nm. Meanwhile, Ul/CuO-NPs are rod-shaped, whereas UL/Ag2 O-NPS are spherical. The EDX analysis shows that Cu metal was present in a high weight percentage over Ag in the case of bio-Ag/Cu-NCMs. The X-ray diffraction denotes that Ul/Ag/Cu-NCMs, UL/CuO-NPs, and UL/Ag2 O-NPS were crystalline. The results predicted by the zeta potential demonstrate that Ul/Ag/Cu-NCMs were more stable than Ul/CuO-NPs. The antibacterial activity of UL/Ag2 O-NPS, Ul/Ag/Cu-NCMs, and UL/CuO-NPs was studied against eleven Gram-negative and Gram-positive multidrug-resistant bacterial species. The maximum inhibition zones were obtained with UL/Ag2 O-NPS, followed by Ul/Ag/Cu-NCMs and Ul/CuO-NPs in all the tested bacteria. The maximum anti-biofilm percentage formed by E. coli KY856933 was obtained with UL/Ag2 O-NPS. These findings suggest that the synthesized nanoparticles might be a great alternative for use as an antibacterial agent against different multidrug-resistant bacterial strains.


Assuntos
Produtos Biológicos , Nanopartículas Metálicas , Ulva , Cobre/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias Gram-Negativas , Bactérias Gram-Positivas
8.
Mar Drugs ; 20(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35200622

RESUMO

The organization of bacteria in biofilms is one of the adaptive resistance mechanisms providing increased protection against conventional treatments. Thus, the search for new antibiofilm agents for medical purposes, especially of natural origin, is currently the object of much attention. The objective of the study presented here was to explore the potential of extracts derived from three seaweeds: the green Ulva lactuca, the brown Stypocaulon scoparium, and the red Pterocladiella capillacea, in terms of their antibiofilm activity against P. aeruginosa. After preparation of extracts by successive maceration in various solvents, their antibiofilm activity was evaluated on biofilm formation and on mature biofilms. Their inhibition and eradication abilities were determined using two complementary methods: crystal violet staining and quantification of adherent bacteria. The effect of active extracts on biofilm morphology was also investigated by epifluorescence microscopy. Results revealed a promising antibiofilm activity of two extracts (cyclohexane and ethyl acetate) derived from the green alga by exhibiting a distinct mechanism of action, which was supported by microscopic analyses. The ethyl acetate extract was further explored for its interaction with tobramycin and colistin. Interestingly, this extract showed a promising synergistic effect with tobramycin. First analyses of the chemical composition of extracts by GC-MS allowed for the identification of several molecules. Their implication in the interesting antibiofilm activity is discussed. These findings suggest the ability of the green alga U. lactuca to offer a promising source of bioactive candidates that could have both a preventive and a curative effect in the treatment of biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Colistina/farmacologia , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Phaeophyceae/metabolismo , Rodófitas/metabolismo , Solventes/química , Tobramicina/farmacologia , Ulva/metabolismo
9.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364251

RESUMO

The effect of a high incorporation level of Ulva lactuca, individually and supplemented with a Carbohydrate-Active enZyme (CAZyme) on broilers' plasma parameters and liver composition is assessed here. Twenty one-day-old Ross 308 male broilers were randomly assigned to one of four treatments (n = 10): corn/soybean meal based-diet (Control); based-diet with 15% U. lactuca (UL); UL diet with 0.005% of commercial carbohydrase mixture; and UL diet with 0.01% of recombinant ulvan lyase. Supplementing U. lactuca with the recombinant CAZyme slightly compromised broilers' growth by negatively affecting final body weight and average daily gain. The combination of U. lactuca with ulvan lyase also increased systemic lipemia through an increase in total lipids, triacylglycerols and VLDL-cholesterol (p < 0.001). Moreover, U. lactuca, regardless of the CAZyme supplementation, enhanced hepatic n-3 PUFA (mostly 20:5n-3) with positive decrease in n-6/n-3 ratio. However, broilers fed with U. lactuca with ulvan lyase reduced hepatic α- and γ-tocopherol concentrations relative to the control. Conversely, the high amount of pigments in macroalga diets led to an increase in hepatic ß-carotene, chlorophylls and total carotenoids. Furthermore, U. lactuca, alone or combined with CAZymes, enhanced hepatic total microminerals, including iron and manganese. Overall, plasma metabolites and liver composition changed favorably in broilers that were fed 15% of U. lactuca, regardless of enzyme supplementation.


Assuntos
Ulva , Animais , Masculino , Ração Animal/análise , Galinhas/metabolismo , Dieta , Suplementos Nutricionais , Fígado
10.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209184

RESUMO

Seaweeds can play a vital role in plant growth promotion. Two concentrations (5 and 10 mg/mL) of soluble polysaccharides extracted from the green macroalgae Ulva fasciata and Ulva lactuca were tested on Zea mays L. The carbohydrate and protein contents, and antioxidant activities (phenols, ascorbic, peroxidase, and catalase) were measured, as well as the protein banding patterns. The soluble polysaccharides at 5 mg/mL had the greatest effect on the base of all of the parameters. The highest effects of soluble polysaccharides on the Zea mays were 38.453, 96.76, 4, 835, 1.658, 7.462, and 38615.19, mg/mL for carbohydrates, proteins, phenol, µg ascorbic/mL, mg peroxidase/g dry tissue, and units/g tissue of catalase, respectively. The total number of protein bands (as determined by SDS PAGE) was not changed, but the density of the bands was correlated to the treatments. The highest band density and promoting effect were correlated to 5 mg/mL soluble polysaccharide treatments extracted from Ulva fasciata in Zea mays, which can be used as a biofertilizer.


Assuntos
Produtos Biológicos/química , Polissacarídeos/química , Alga Marinha/química , Zea mays/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Fotossíntese , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Pigmentos Biológicos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Alga Marinha/crescimento & desenvolvimento , Solubilidade , Análise Espectral , Relação Estrutura-Atividade , Água , Zea mays/crescimento & desenvolvimento
11.
J Phycol ; 57(2): 619-635, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33338254

RESUMO

Arabinogalactan proteins (AGPs) encompass a diverse group of plant cell wall proteoglycans, which play an essential role in plant development, signaling, plant-microbe interactions, and many others. Although they are widely distributed throughout the plant kingdom and extensively studied, they remain largely unexplored in the lower plants, especially in seaweeds. Ulva species have high economic potential since various applications were previously described including bioremediation, biofuel production, and as a source of bioactive compounds. This article presents the first experimental confirmation of AGP-like glycoproteins in Ulva species and provides a simple extraction protocol of Ulva lactuca AGP-like glycoproteins, their partial characterization and unique comparison to scarcely described Solanum lycopersicum AGPs. The reactivity with primary anti-AGP antibodies as well as Yariv reagent showed a great variety between Ulva lactuca and Solanum lycopersicum AGP-like glycoproteins. While the amino acid analysis of the AGP-like glycoproteins purified by the ß-d-glucosyl Yariv reagent showed a similarity between algal and land plant AGP-like glycoproteins, neutral saccharide analysis revealed unique glycosylation of the Ulva lactuca AGP-like glycoproteins. Surprisingly, arabinose and galactose were not the most prevalent monosaccharides and the most outstanding was the presence of 3-O-methyl-hexose, which has never been described in the AGPs. The exceptional structure of the Ulva lactuca AGP-like glycoproteins implies a specialized adaptation to the marine environment and might bring new insight into the evolution of the plant cell wall.


Assuntos
Clorófitas , Embriófitas , Ulva , Galactanos , Glicoproteínas , Mucoproteínas , Proteínas de Plantas
12.
Mar Drugs ; 19(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34677438

RESUMO

Reactive oxygen species (ROS) are the key factors that cause many diseases in the human body. Polysaccharides from seaweed have been shown to have significant antioxidant activity both in vivo and in vitro. The ameliorative effect of Ulva lactuca polysaccharide extract (UPE) on renal injury induced by oxidative stress was analyzed. As shown by hematoxylin-eosin staining results, UPE can significantly improve the kidney injury induced by D-galactose (D-gal). Additionally, the protective mechanism of UPE on the kidney was explored. The results showed that UPE could decrease the levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum cystatin C (Cys-C), lipid peroxidation, protein carbonylation, and DNA oxidative damage (8-OHdG) and improve kidney glutathione content. Moreover, UPE significantly increased the activities of superoxide dismutase and glutathione peroxidase and total antioxidant activity in mice. UPE also decreased the levels of inflammatory cytokines TNF-α and IL-6. Further investigation into the expression of apoptotic protein caspase-3 showed that UPE decreased the expression of apoptotic protein caspase-3. These results indicate that UPE has a potential therapeutic effect on renal injury caused by oxidative stress, providing a new theoretical basis for the treatment of oxidative damage diseases in the future.


Assuntos
Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Ulva , Animais , Animais não Endogâmicos , Organismos Aquáticos , Modelos Animais de Doenças , Galactose , Masculino , Camundongos , Extratos Vegetais/química , Polissacarídeos/química , Substâncias Protetoras/química
13.
Mar Drugs ; 19(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34677477

RESUMO

Caulerpa racemosa (sea grapes) and Ulva lactuca (sea lettuces) are edible green seaweeds and good sources of bioactive compounds for future foods, nutraceuticals and cosmeceutical industries. In the present study, we determined nutritional values and investigated the recovery of bioactive compounds from C. racemosa and U. lactuca using hot water extraction (HWE) and subcritical water extraction (SWE) at different extraction temperatures (110 to 230 °C). Besides significantly higher extraction yield, SWE processes also give higher protein, sugar, total phenolic (TPC), saponin (TSC), flavonoid contents (TFC) and antioxidant activities as compared to the conventional HWE process. When SWE process was applied, the highest TPC, TSC and TFC values were obtained from U. lactuca hydrolyzed at reaction temperature 230 °C with the value of 39.82 ± 0.32 GAE mg/g, 13.22 ± 0.33 DE mg/g and 6.5 ± 0.47 QE mg/g, respectively. In addition, it also showed the highest antioxidant activity with values of 5.45 ± 0.11 ascorbic acid equivalents (AAE) mg/g and 8.03 ± 0.06 trolox equivalents (TE) mg/g for ABTS and total antioxidant, respectively. The highest phenolic acids in U. lactuca were gallic acid and vanillic acid. Cytotoxic assays demonstrated that C. racemosa and U. lactuca hydrolysates obtained by HWE and SWE did not show any toxic effect on RAW 264.7 cells at tested concentrations after 24 h and 48 h of treatment (p < 0.05), suggesting that both hydrolysates were safe and non-toxic for application in foods, cosmeceuticals and nutraceuticals products. In addition, the results of this study demonstrated the potential of SWE for the production of high-quality seaweed hydrolysates. Collectively, this study shows the potential of under-exploited tropical green seaweed resources as potential antioxidants in nutraceutical and cosmeceutical products.


Assuntos
Antioxidantes/farmacologia , Alimento Funcional , Alga Marinha , Animais , Antioxidantes/química , Organismos Aquáticos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Caulerpa , Hidrólise , Valor Nutritivo , Ulva
14.
Mar Drugs ; 19(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34436289

RESUMO

Ulva lactuca (U. lactuca) is a green alga distributed worldwide and used as a food and cosmetic material. In our previous study, we determined the effects of U. lactuca methanol extracts on the UVB-induced DNA repair. In the present study, we fractionated U. lactuca methanol extracts to identify the effective compound for the DNA repair. MTT assay demonstrated that (+)-epiloliolide showed no cytotoxicity up to 100 µM in BJ-5ta human dermal fibroblast. Upon no treatment, exposure to UVB 400 J/m2 decreased cell viability by 45%, whereas (+)-epiloliolide treatment for 24 h after UVB exposure significantly increased the cell viability. In GO and GESA analysis, a number of differentially expressed genes were uniquely expressed in (+)-epiloliolide treated cells, which were enriched in the p53 signaling pathway and excision repair. Immunofluorescence demonstrated that (+)-epiloliolide increased the nuclear localization of p53. Comet assay demonstrated that (+)-epiloliolide decreased tail moment increased by UVB. Western blot analysis demonstrated that (+)-epiloliolide decreased the levels of p-p53, p21, Bax, and Bim, but increased that of Bcl-2. Reverse transcription PCR (RT-PCR) demonstrated that (+)-epiloliolide decreased the levels of MMP 1, 9, and 13, but increased that of COL1A1. These results suggest that (+)-epiloliolide regulates p53 activity and has protective effects against UVB.


Assuntos
Benzofuranos/farmacologia , Fibroblastos/efeitos dos fármacos , Envelhecimento da Pele , Proteína Supressora de Tumor p53/efeitos dos fármacos , Ulva , Organismos Aquáticos , Humanos , Fitoterapia , Raios Ultravioleta
15.
Mar Drugs ; 19(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34940661

RESUMO

A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.


Assuntos
Antioxidantes/farmacologia , Produtos Biológicos/química , Cosmecêuticos/química , Extratos Vegetais/farmacologia , Alga Marinha , Antioxidantes/química , Organismos Aquáticos , Humanos , Islândia , Extratos Vegetais/química
16.
J Dairy Sci ; 104(3): 3575-3584, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455754

RESUMO

Intact seaweed or seaweed extracts are used as feed supplements to improve the gut microbiome in young animals. Seaweeds provide functional polysaccharides, and they are a good source of vitamins, minerals, and phenolic compounds, all of which are relevant for immune system development. However, literature on the effects of dried seaweed supplementation on immune system development is limited, especially in calves. This experiment aimed to study the effect of feeding milk supplemented with Ulva lactuca, Ascophyllum nodosum, or Saccharina latissima on the systemic immune status of preweaning dairy calves. Forty male Holstein calves with birth body weight 41 ± 4 kg and plasma Brix percentage ≥8.7% at d 2 after birth were used in this study. Calves were fed 4 L of cow milk twice a day (total 8 L/d). From d 2 to d 28, calves in the control group (n = 10) received milk without seaweed supplementation. Over the same period, experimental calves received milk supplemented with Ulva lactuca (SW1; n = 10), Ascophyllum nodosum (SW2; n = 10), or Saccharina latissima (SW3, n = 10). Dried and ground seaweeds were offered at a daily allowance of 50 g/8 L of milk (i.e., approximately 5% inclusion rate on a dry matter basis). Blood samples were collected from a jugular vein on d 2, 4, 7, 14, 21, and 28 after birth. Plasma concentrations of total protein, albumin, immunoglobulins, and acute-phase proteins (i.e., serum amyloid A, fibrinogen, and haptoglobin) were measured. We detected no differences in average daily gain, plasma immunoglobulins, albumin, or total protein. However, the contrast analysis revealed that plasma concentrations of fibrinogen (SW1 and SW2) and serum amyloid A (SW2 and SW3) were significantly higher in the seaweed groups compared with the control group. We also found a tendency for high plasma haptoglobin in the seaweed groups (SW1 and SW2) compared with the control group. Differences in acute-phase protein concentrations could be partially explained by the large differences in micromineral intake between control and seaweed-supplemented calves. Feeding milk supplemented with dried seaweed increased plasma concentrations of variables related to the innate immune response in preweaning dairy calves.


Assuntos
Leite , Alga Marinha , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Imunidade Inata , Masculino , Desmame
17.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641350

RESUMO

Due to the high consumption of fat-rich processed foods, efforts are being done to reduce their saturated fat (SFA) contents and replace it with polyunsaturated fatty acids (PUFA), creating a necessity to find alternative PUFA sources. Macroalgae, being a promising natural source of healthy food, may be such an alternative. The fatty acid (FA) profile of Fucus spiralis, Bifurcaria bifurcata, Ulva lactuca, and Saccorhiza polyschides were determined through direct transesterification and their seasonal variation was studied. F. spiralis showed the highest FA content overall, B. bifurcata presented the higher PUFA amounts, and U. lactuca and S. polyschides the higher SFA. The production of FA was shown to be influenced by the seasons. Spring and summer seemed to induce the FA production in F. spiralis and B. bifurcata while in U. lactuca the same was verified in winter. U. lactuca presented a ω6/ω3 ratio between 0.59 and 1.38 while B. bifurcata presented a ratio around 1.31. The study on the seasonal variations of the macroalgal FA profile can be helpful to understand the best season to yield FA of interest, such as ALA, EPA, and DHA. It may also provide valuable information on the best culturing conditions for the production of desired FAs.


Assuntos
Ácidos Graxos/análise , Estações do Ano , Alga Marinha/classificação , Alga Marinha/metabolismo , Especificidade da Espécie
18.
Ann Pharm Fr ; 79(1): 36-43, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32871133

RESUMO

OBJECTIVES: Currently, the global interests tend to take advantage of the plant world as a renewable source of a natural and effective molecule, to find an eco-friendly, cost-effective, and less toxic alternative to the current synthetic pesticide. In this context, the present research was carried out in an attempt to study the insecticidal activity of extracts and pigments derived from the green plant Spinacia oleracea and the green alga Ulva lactuca against the fruit fly Drosophila melanogaster as an alternative to chemical insecticide. METHODS: The toxicity of the aqueous, acetonic and ethanolic extracts as well as of the purified pigments (Chlorophylls and carotenoids) was determined by complementary in vivo tests (application by spraying oranges, toxicity by ingestion and repellent activity). Interestingly, each one of these methods corresponds to a specific mode of exposure. RESULTS: Results showed that acetone extracts, which are rich in green pigments, present the best insecticidal activities. On the other hand, the purified chlorophyllian pigments exhibited an interesting activity only by spraying method. Regarding the repellent activity, the aqueous extract of spinach displayed higher effectiveness. CONCLUSION: Our study suggests the potential of tested plant and algal extracts, as well as of chlorophyllian pigments, to provide a safer alternative way to the use of synthetic pesticides.


Assuntos
Drosophila melanogaster , Repelentes de Insetos , Inseticidas/toxicidade , Spinacia oleracea/química , Ulva/química , Acetona , Animais , Carotenoides/farmacologia , Clorofila/farmacologia , Etanol , Pigmentos Biológicos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Solventes , Água
19.
Planta ; 252(6): 107, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206238

RESUMO

MAIN CONCLUSION: Benzopyrene is rapidly incorporated and metabolized, and induces oxidative stress and activation of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca. To analyze absorption and metabolism of benzo[a]pyrene (BaP) in Ulva lactuca, the alga was cultivated with 5 µM of BaP for 72 h. In the culture medium, BaP level rapidly decreased reaching a minimal level at 12 h and, in the alga, BaP level increased until 6 h, remained stable until 24 h, and decreased until 72 h indicating that BaP is being metabolized in U. lactuca. In addition, BaP induced an initial increase in hydrogen peroxide decreasing until 24 h, superoxide anions level that remained high until 72 h, and lipoperoxides that initially increased and decreased until 72 h, showing that BaP induced oxidative stress. Activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (AP), glutathione reductase (GR) and glutathione peroxidase (GP) were increased, whereas dehydroascorbate reductase (DHAR) activity was unchanged. The level of transcripts encoding these antioxidant enzymes was increased, but transcripts encoding DHAR remained unchanged. Interestingly, the activity of glutathione-S-transferase (GST) was also increased, and inhibitors of cytochrome P450 (CYP450) and GST activities enhanced the level of BaP in algal tissue, suggesting that these enzymes participate in BaP metabolism.


Assuntos
Benzopirenos , Regulação Enzimológica da Expressão Gênica , Estresse Oxidativo , Oxirredutases , Ulva , Benzopirenos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética , Ulva/efeitos dos fármacos , Ulva/enzimologia , Ulva/genética
20.
Arch Microbiol ; 202(3): 455-471, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31696248

RESUMO

It is known that cell extracts of various algae have antifungal activity against microorganisms in vitro. Antifungal activities of Ulva lactuca, Chlorella vulgaris, Chlorella minutissima, and Chlorella protothecoides were investigated against: Aspergillus niger, Alternaria alternata, and Penicillium expansum fungi to present their fungicide potentials. Aspergillus niger, Alternaria sp., and Penicillium expansum are typical soft-rotting fungi and cause important loss of apple fruit in the storage. In vitro antifungal activity was evaluated by agar disc diffusion assay against pathogenic apple rot fungi. As a result, almost all of the extracts obtained from algae species were revealed to have antifungal activity against selected fungal pathogens. Free radical-scavenging activity of the extracts was determined with 1,1-diphenyl-2 picryl hydrazyl (DPPH) free radical-scavenging method. Extract of C. protothecoides was determined to have a stronger antioxidant activity than other algae extracts. This study reveals that the potential of algae should be investigated for the production of natural fungicide for pharmaceutical and food industries.


Assuntos
Chlorella vulgaris/química , Fungicidas Industriais/farmacologia , Malus/microbiologia , Extratos Vegetais/farmacologia , Ulva/química , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Fungicidas Industriais/química , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA