Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806196

RESUMO

Vascular and lymphatic vessels drive breast cancer (BC) growth and metastasis. We assessed the cell growth (proliferation, migration, and capillary formation), gene-, and protein-expression profiles of Vascular Endothelial Cells (VECs) and Lymphatic Endothelial Cells (LECs) exposed to a conditioned medium (CM) from estrogen receptor-positive BC cells (MCF-7) in the presence or absence of Estradiol. We demonstrated that MCF-7-CM stimulated growth and capillary formation in VECs but inhibited LEC growth. Consistently, MCF-7-CM induced ERK1/2 and Akt phosphorylation in VECs and inhibited them in LECs. Gene expression analysis revealed that the LECs were overall (≈10-fold) more sensitive to MCF-7-CM exposure than VECs. Growth/angiogenesis and cell cycle pathways were upregulated in VECs but downregulated in LECs. An angiogenesis proteome array confirmed the upregulation of 23 pro-angiogenesis proteins in VECs. In LECs, the expression of genes related to ATP synthesis and the ATP content were reduced by MCF-7-CM, whereas MTHFD2 gene, involved in folate metabolism and immune evasion, was upregulated. The contrasting effect of MCF-7-CM on the growth of VECs and LECs was reversed by inhibiting the TGF-ß signaling pathway. The effect of MCF-7-CM on VEC growth was also reversed by inhibiting the VEGF signaling pathway. In conclusion, BC secretome may facilitate cancer cell survival and tumor growth by simultaneously promoting vascular angiogenesis and inhibiting lymphatic growth. The differential effects of BC secretome on LECs and VECs may be of pathophysiological relevance in BC.


Assuntos
Neoplasias da Mama , Células Endoteliais , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Linfangiogênese/genética , Células MCF-7 , Neovascularização Patológica/metabolismo , Secretoma , Transcriptoma
2.
J Biol Chem ; 295(28): 9618-9629, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32444495

RESUMO

Angiogenesis-mediated neovascularization in the eye is usually associated with visual complications. Pathological angiogenesis is particularly prominent in the retina in the settings of proliferative diabetic retinopathy, in which it can lead to permanent loss of vision. In this study, by bioinformatics analyses, we provide evidence for elevated expression of actin-binding protein PFN1 (profilin1) in the retinal vascular endothelial cells (VECs) of individuals with proliferative diabetic retinopathy, findings further supported by gene expression analyses for PFN1 in experimentally induced abnormal retinal neovascularization in an oxygen-induced retinopathy murine model. We observed that in a conditional knockout mouse model, postnatal deletion of the Pfn1 gene in VECs leads to defects in tip cell activity (marked by impaired filopodial protrusions) and reduced vascular sprouting, resulting in hypovascularization during developmental angiogenesis in the retina. Consistent with these findings, an investigative small molecule compound targeting the PFN1-actin interaction reduced random motility, proliferation, and cord morphogenesis of retinal VECs in vitro and experimentally induced abnormal retinal neovascularization in vivo In summary, these findings provide the first direct in vivo evidence that PFN1 is required for formation of actin-based protrusive structures and developmental angiogenesis in the retina. The proof of concept of susceptibility of abnormal angiogenesis to small molecule intervention of PFN1-actin interaction reported here lays a conceptual foundation for targeting PFN1 as a possible strategy in angiogenesis-dependent retinal diseases.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Profilinas/metabolismo , Neovascularização Retiniana/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Camundongos , Camundongos Knockout , Oxigênio/metabolismo , Profilinas/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Neovascularização Retiniana/terapia
3.
Mol Cell Biochem ; 475(1-2): 127-135, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32770325

RESUMO

Atherosclerosis is the common vascular disease. Vascular smooth muscle cell proliferation and vascular endothelial cell (VEC) dysfunction are involved in the causes of atherosclerosis. And oxidized low-density lipoprotein (ox-LDL)-induced vascular endothelial cells (VECs) are suitable models for studying atherosclerosis development. Paeonol was reported to repress ox-LDL-induced VEC progression. However, its detailed mechanism was not fully reported. MicroRNAs (miRNAs) acted as regulators in multiple diseases. Previous findings found that microRNA-338-3p (miR-338-3p) was overexpressed in Atherosclerosis process. However, the function and underlying mechanism of miR-338-3p in ox-LDL-treated VECs needed to be elucidated. The purpose of this research was to reveal the role of miR-338-3p in paeonol-regulated ox-LDL-induced VEC progression. Cell counting kit-8 (CCK-8) and flow cytometry were employed to determine cell viability and apoptosis, respectively. Moreover, the levels of IL-6 and IL-1ß were analyzed using enzyme-linked immunosorbent assay, as well as the contents of reactive oxygen species, lactate dehydrogenase, and malonic dialdehyde were investigated using related kits. Furthermore, quantitative real-time polymerase chain reaction was carried out to determine the expression of miR-338-3p. Western blot assay was conducted to detect the level of tet methylcytosine dioxygenase 2 (TET2). Besides, the interaction between miR-338-3p and TET2 was predicted by DIANA, and then confirmed by the dual-luciferase reporter assay and RNA immunoprecipitation assay. Ox-LDL repressed mice VEC viability, and promoted apoptosis, inflammatory response, and oxidative injury. Paeonol inhibited the effect of ox-LDL on the growth of the VECs. Furthermore, paeonol regulated VEC development via downregulating miR-338-3p expression. Interestingly, miR-338-3p targeted TET2 and inhibited TET2 expression. MiR-338-3p modulated ox-LDL-treated VEC growth through suppressing TET2 expression. We demonstrated that paeonol attenuated the effect of ox-LDL on the development of mice VECs via modulating miR-338-3p/TET2 axis, providing a theoretical basis for the treatment of AS.


Assuntos
Acetofenonas/farmacologia , Aterosclerose/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Apoptose/efeitos dos fármacos , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Dioxigenases , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais
4.
Apoptosis ; 24(7-8): 552-561, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30911960

RESUMO

More and more studies reported that diverse biological roles of long noncoding RNAs were usually dependent on their subcellular location. In our previous study, long noncoding RNA CERNA1 was identified both located in cytoplasm and nucleus of vascular endothelial cells (VECs). And CERNA1 in cytoplasm, which functioned as competitive endogenous RNA (ceRNA), alleviated the apoptosis of VECs. However, the function of CERNA1 in nucleus was still unclear. In this study, we found that nuclear CERNA1 positively regulated BCL2L10, which accelerated the serum and FGF-2 starvation-induced apoptosis of VECs, by enhancing the histone modification level of H3K9ac and H3K4me3 in BCL2L10 promoter region. Furthermore, due to the paradoxical function, we investigated the variation of CERNA1 subcellular location in VECs. The results showed that, as the change of apoptosis status, CERNA1 altered the cellular distribution in VECs. And the annexin A7 inhibitor, ABO (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine), not only increased the expression of CERNA1 by TIA-1, but also specifically improved its cytoplasm distribution proportion so as to inhibit the apoptosis of VECs. This evidence suggested that the subcellular location of CERNA1 played an important role in the VECs apoptosis and ABO might be a potential chemical molecule for therapy of VECs apoptosis related cardiovascular diseases.


Assuntos
Anexina A7/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Benzoxazinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , RNA Longo não Codificante/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Código das Histonas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo
5.
Microvasc Res ; 118: 90-100, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29505767

RESUMO

Recent studies have revealed considerable dysfunction of vascular endothelial cells (VECs) and abnormal expression of microRNA (miR)-137 in women with gestational diabetes mellitus (GDM), and the aim of this study was to clarify the underlying mechanism and possible role of microRNA (miR)-137 in dysfunction of VECs during GDM. We found increased levels of miR-137 in the plasma of GDM women and high-glucose (HG)-exposed HUVECs. Upregulating miR-137 in HUVECs elevated the chemokine (C-C motif) ligand 2 (CCL2) secretion and enhanced the chemotaxis and adhesion of U937 and THP-1 (two human acute monocytic leukemia cell lines) cells to HUVECs in a co-culture system. Moreover, HG stimulation and/or overexpression of miR-137 inhibited the viability, upregulated the expression levels of vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), E-selectin, and inflammatory cytokine interleukin (IL)-6, and downregulated the production of IL-8, vascular endothelial growth factor (VEGF), and angiogenesis of HUVECs in vitro. These results imply that up-regulated miR-137 by HG can restrict the viability and angiogenesis, promote the activation and inflammatory cytokine secretion of VECs, and stimulate the monocyte chemotaxis and adhesion to VECs. Ultimately, we have concluded that miR-137 is crucial to HG-induced VEC dysfunction and may be involved in pathology of GDM.


Assuntos
Diabetes Gestacional/metabolismo , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MicroRNAs/metabolismo , Adulto , Glicemia/metabolismo , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Quimiotaxia/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Diabetes Gestacional/sangue , Diabetes Gestacional/genética , Diabetes Gestacional/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Neovascularização Patológica , Gravidez , Células THP-1 , Células U937 , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257087

RESUMO

Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E2 (PGE2). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES-1-deficient (mPGES-1-/-) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1ß (IL-1ß) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE2 receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES-1-/- mice. Moreover, IL-1ß and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1-/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1ß in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.


Assuntos
Comunicação Autócrina , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Prostaglandina-E Sintases/metabolismo , Animais , Feminino , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Prostaglandina-E Sintases/genética , Receptores Tipo I de Interleucina-1/metabolismo
7.
Cancer Med ; 12(14): 15337-15349, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37350549

RESUMO

Despite the benefit with cancer immunotherapies in clinical implication, immunotherapeutic resistance occurred in many patients and the mechanism remains unknown. Increasing evidence has revealed that cell-intrinsic programmed cell death ligand 1 (PD-L1) may play a non-negotiable part in immunotherapeutic resistance. Our present study aimed to elucidate the immune-independent acquired resistance mechanism to PD-L1 antibody. We found elevated PD-L1 expression induced by PD-L1 antibodies in cancer cell and vascular endothelial cells (VECs) with substantially acquired resistance to PD-L1 antibodies. Moreover, proliferation of resistant cells was accelerated and the apoptosis was reduced in the absence of immune compared with parental cells. Subsequently, we confirmed that the activation of the PI3K/AKT pathway is involved in the upregulation of PD-L1 expression. Finally, we found that low dose of anlotinib downregulated PD-L1 expression only in VECs via inhibiting the PI3K/AKT pathway; however, the same effect was not observed in cancer cells. To sum up, our findings revealed that upregulation of PD-L1 via activation of the PI3K/AKT signal pathway may promote acquired resistance to PD-L1 antibodies in an immune-independent manner. SIGNIFICANCE: These findings provide new mechanisms of immunotherapeutic resistance and effective evidence of anlotinib combined with immunotherapy.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antígeno B7-H1/metabolismo , Regulação para Cima , Células Endoteliais/metabolismo , Transdução de Sinais , Anticorpos/farmacologia , Linhagem Celular Tumoral
8.
Front Cell Dev Biol ; 11: 1146399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025170

RESUMO

Vascular endothelial cells (ECs) that constitute the inner surface of blood vessels are essential for new vessel formation and organ homeostasis. ECs display remarkable phenotypic heterogeneity across different organs and the vascular tree during angiogenesis and homeostasis. Recent advances in single cell RNA sequencing (scRNA-seq) technologies have allowed a new understanding of EC heterogeneity in both mice and humans. In particular, scRNA-seq has identified new molecular signatures for arterial, venous and capillary ECs in different organs, as well as previously unrecognized specialized EC subtypes, such as the aerocytes localized in the alveolar capillaries of the lung. scRNA-seq has also revealed the gene expression profiles of specialized tissue-resident EC subtypes that are capable of clonal expansion and contribute to adult angiogenesis, a process of new vessel formation from the pre-existing vasculature. These specialized tissue-resident ECs have been identified in various different mouse tissues, including aortic endothelium, liver, heart, lung, skin, skeletal muscle, retina, choroid, and brain. Transcription factors and signaling pathways have also been identified in the specialized tissue-resident ECs that control angiogenesis. Furthermore, scRNA-seq has also documented responses of ECs in diseases such as cancer, age-related macular degeneration, Alzheimer's disease, atherosclerosis, and myocardial infarction. These new findings revealed by scRNA-seq have the potential to provide new therapeutic targets for different diseases associated with blood vessels. In this article, we summarize recent advances in the understanding of the vascular endothelial cell heterogeneity and endothelial stem cells associated with angiogenesis and homeostasis in mice and humans, and we discuss future prospects for the application of scRNA-seq technology.

9.
Tissue Cell ; 75: 101740, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35101688

RESUMO

Luteolin inhibits tumorigenesis of non-small cell lung cancer (NSCLC), but its mechanism still needs to be clarified. We hereby explored the effects of luteolin in vascular endothelial cells of NSCLC (NSCLC-VECs). After extraction and identification of NSCLC-VECs, cells were treated with luteolin and transfected. The viability, migration, angiogenesis and invasion of the cells were measured. The levels of miR-133a-3p, purine rich element binding protein B (PURB), vascular endothelial growth factor (VEGF), phosphatidylinositol 3-kinase (PI3K), Akt, mitogen-activated protein kinases (MAPK), matrix metalloproteinase (MMP)-2/-9 were determined. The interaction relationship of miR-133a-3p and PURB was identified. Luteolin inhibited the viability, migration, angiogenesis and invasion of NSCLC-VECs yet up-regulated miR-133a-3p level, while miR-133a-3p inhibitor counteracted the repressive effect of luteolin on the viability, migration, angiogenesis, and invasion in NSCLC-VECs. Luteolin inhibited the expressions of migration- and invasion-associated proteins (VEGF, MMP-2 and MMP-9), PI3K/Akt and MAPK signaling pathways-related factors, while miR-133a-3p inhibitor reversed the inhibitory effect of Luteolin on NSCLC-VECs. Luteolin decreased the level of PURB, which was targeted by miR-133a-3p. ShPURB promoted miR-133a-3p level in NSCLC-VECs, while reversing the promoting effects of miR-133a-3p inhibitor on the migration, invasion, and levels of migration- and invasion-associated proteins, PI3K/Akt and MAPK pathways-associated factors in NSCLC-VECs. Collectively speaking, luteolin inhibits the migration and invasion of NSCLC-VECs via miR-133a-3p/PURB- mediated MAPK and PI3K/Akt pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ligação a DNA , Neoplasias Pulmonares , Luteolina , Sistema de Sinalização das MAP Quinases , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Luteolina/farmacologia , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/farmacologia
10.
Open Life Sci ; 16(1): 899-908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34553070

RESUMO

This research aimed to describe the functions of vascular endothelial cells (VECs) in protecting target organs and the anti-atherosclerotic effects of different enantiomers of amlodipine on a rabbit model of atherosclerosis. Thirty male New Zealand white rabbits were randomly allocated to four groups (nA = 9, nB = 7, nC = 7, and nD = 7 rabbits): rabbits in group-A (control group) were fed a high-fat diet, group-B rabbits were fed a high-fat diet plus 2.5 mg/kg/day S-amlodipine, group-C rabbits were fed a high-fat diet plus 2.5 mg/kg/day R-amlodipine, and group-D rabbits were fed a high-fat diet plus 5 mg/kg/day racemic amlodipine. Different enantiomers of amlodipine did not influence lipid profiles and serum level of eNOS in the rabbit atherosclerosis model but decreased ET-1 expression to some extent. The serum NO and iNOS levels in the drug intervention groups were significantly reduced. No significant differences in the rabbits' body weights were observed. At the 4th and 8th weeks, the serum lipid profiles significantly increased in high cholesterol diet groups. The serum ET-1 level was significantly increased in each group of rabbits at the 8th week. Both S-amlodipine and R-amlodipine may protect the endothelium by reducing the serum ET-1 level, downregulating iNOS expression.

11.
J Biomed Mater Res A ; 107(2): 371-382, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461189

RESUMO

Clinical utility of small-diameter vascular grafts is still challenging in blood vessel regeneration owing to thrombosis and intimal hyperplasia. To cope with the issues, modulation of gene expression via microRNAs (miRNAs) could be a feasible approach by rational regulating physiological activities of both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Our previous studies demonstrated that individually loaded miRNA-126 (miR-126) or miRNA-145 (miR-145) in the electrospun membranes showed the tendency to promote vascular regeneration. In this work, the bilayered electrospun graft in 1.5-mm diameter was developed by emulsion electrospinning to dual-load miR-126 and miR-145 for target regulation of both VECs and VSMCs, respectively. Accelerated release of miR-126 was achieved by introducing poly(ethylene glycol) in the inner electrospun poly(ethylene glycol)-b-poly(l-lactide-co-caprolactone) ultrafine fibrous membrane, reaching 61.3 ± 1.2% of the cumulative release in the initial 10 days, whereas the outer electrospun poly(l-lactide-co-glycolide) membrane composed of microfibers fulfilled prolonged release of miR-145 for about 56 days. In vivo tests suggested that dual-loading with miR-126 and miR-145 in the bilayered electrospun membranes could modulate both VECs and VSMCs for rapid endothelialization and hyperplasia inhibition as well. It is reasonably expected that dual target-delivery of miR-126 and miR-145 in the electrospun vascular grafts has effective potential for small-diameter vascular regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 371-382, 2019.


Assuntos
Prótese Vascular , Células Endoteliais/fisiologia , Membranas Artificiais , MicroRNAs/administração & dosagem , Músculo Liso Vascular/fisiologia , Animais , Materiais Biocompatíveis/química , Células Endoteliais/citologia , MicroRNAs/uso terapêutico , Músculo Liso Vascular/citologia , Poliésteres/química , Polietilenoglicóis/química , Poliglactina 910/química , Coelhos , Regeneração
12.
Regen Biomater ; 5(3): 129-139, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29977596

RESUMO

Osteoinductivity of porous calcium phosphate (CaP) ceramics has been widely investigated and confirmed, and it might be attributed to the rapid formation of the vascular networks after in vivo implantation of the ceramics. In this study, to explore the vascularization mechanism within the CaP ceramics, the migration and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) under the stimulation of porous biphasic calcium phosphate (BCP) ceramic with excellent osteoinductivity were systematically investigated. The results indicated that the directional migration of BMSCs toward BCP ceramic occurred when evaluated by using a transwell model, and the BMSCs migration was enhanced by the seeded macrophages on the ceramic in advance. Besides, by directly culturing BMSCs on BCP ceramic discs under both in vitro and in vivo physiological environment, it was found that the differentiation of BMSCs toward vascular endothelial cells (VECs) happened under the stimulation of BCP ceramic, as was confirmed by the up-regulated gene expressions and protein secretions of VECs-related characteristic factors, including kinase insert domain receptor, von willebrand factor, vascular cell adhesion molecule-1 and cadherin 5 in the BMSCs. This study offered a possibility for explaining the origin of VECs during the rapid vascularization process after in vivo implantation of porous CaP ceramics and could give some useful guidance to reveal the vascularization mechanism of the ceramics.

13.
MethodsX ; 5: 1324-1329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386733

RESUMO

Resources allocated to natural resource management often fluctuate, requiring the types and numbers of parameters used in monitoring programs (e.g., indicators of ecosystem health) to be frequently reassessed. Conventional approaches to selecting monitoring indicators are often biased and non-inclusive. A new Criteria-based Ranking (CBR) process for selecting and/or prioritizing indicators was tested in the Muskoka River Watershed (Ontario, Canada). The CBR process is based on two environmental assessment tools, Simple Weighted and Leopold matrices. It incorporates environmental components and criteria for assessing each indicator, which generate a score per indicator. The process tested in this study was concluded to be an effective way to prioritize and/or select environmental monitoring indicators. A different set of indicators emerged when a common set of criteria was used to assess monitoring indicators. Benefits of the CBR process include: •Standardization of indicator selection process with less bias and lower cost (e.g., time and human resources).•Indicators that are representative of the community and more relevant for decision-making (e.g., more resilient to socio-political change).•Adaptability: (1) to other goals, e.g., selecting from a list of Valued Ecosystem Components (VECs), and (2) to any context through localized scoring criteria. Easily integrated into existing practice.

14.
Biosci Rep ; 37(6)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29070519

RESUMO

The apelin gene can promote vascular endothelial cell (VEC) proliferation, migration, and angiogenesis. However, the molecular mechanism for regulation of the apelin gene is still unknown. Real-time PCR and Western blotting analysis were employed to detect the effect of all-trans retinoic acid (ATRA) in up-regulating apelin expression in human umbilical vein endothelial cells (HUVECs). Furthermore, the in vivo study also indicated that ATRA could increase apelin expression in balloon-injured arteries of rats, which is consistent with the results from the cultured HUVECs. To ensure whether retinoic acid receptor (RAR) α (RARα) could be induced by ATRA in regulating apelin, the expression of RARα was tested with a siRNA method to knock down RARα or adenovirus vector infection to overexpress RARα. The results showed that ATRA could up-regulate apelin expression time- and dose- dependently in HUVECs. ATRA could induce a RARα increase; however, the expression of RARß and RARγ were unchanged. The blocking of RARα signaling reduced the response of apelin to ATRA when HUVECs were treated with RARα antagonists (Ro 41-5253) or the use of siRNA against RARα (si-RARα) knockdown RARα expression before using ATRA. In addition, induction of RARα overexpression by infection with pAd-GFP-RARα further increased the induction of apelin by ATRA. These results suggested that ATRA up-regulated apelin expression by promoting RARα signaling.


Assuntos
Apelina/metabolismo , Células Endoteliais/metabolismo , Tretinoína/metabolismo , Animais , Benzoatos/farmacologia , Linhagem Celular , Cromanos/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Ratos , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Am J Reprod Immunol ; 77(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28185353

RESUMO

PROBLEM: Autophagy plays an important role in clearance of intracellular pathogens. However, no information is available on its involvement in vaginal infections such as vulvo-vaginal candidiasis (VVC). VVC is intimately associated with the immune status of the human vaginal epithelial cells (VECs). The objective of our study is to decipher if autophagy process is involved during Candida albicans infection of VECs. METHODS OF STUDY: In this study, C. albicans infection system was established using human VEC line (VK2/E6E7). Infection-induced change in the expression of autophagy markers like LC3 and LAMP-1 were analyzed by RT-PCR, q-PCR, Western blot, immunofluorescence and transmission electron microscopy (TEM) studies were carried out to ascertain the localization of autophagosomes. Multiplex ELISA was carried out to determine the cytokine profiles. RESULTS: Analysis of LC3 and LAMP-1 expression at mRNA and protein levels at different time points revealed up-regulation of these markers 6 hours post C. albicans infection. LC3 and LAMP-1 puncti were observed in infected VECs after 12 hours. TEM studies showed C. albicans entrapped in autophagosomes. Cytokines-TNF-α and IL-1ß were up-regulated in culture supernatants of VECs at 12 hours post-infection. CONCLUSION: The results suggest that C. albicans invasion led to the activation of autophagy as a host defense mechanism of VECs.


Assuntos
Autofagia/fisiologia , Candidíase Vulvovaginal/patologia , Células Epiteliais/microbiologia , Vagina/microbiologia , Biomarcadores/análise , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/patologia , Feminino , Imunofluorescência , Humanos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Vagina/citologia , Vagina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA