Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2400569121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985771

RESUMO

Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.


Assuntos
Membrana Celular , Polaridade Celular , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Polaridade Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Animais , Transdução de Sinais , Processamento de Proteína Pós-Traducional , Peptídeos e Proteínas de Sinalização Intracelular
2.
Proc Natl Acad Sci U S A ; 120(20): e2302937120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155852

RESUMO

Implantation is the first direct encounter between the embryo and uterus during pregnancy, and Hbegf is the earliest known molecular signaling for embryo-uterine crosstalk during implantation. The downstream effectors of heparin-binding EGF (HB-EGF) in implantation remain elusive due to the complexity of EGF receptor family. This study shows that the formation of implantation chamber (crypt) triggered by HB-EGF is disrupted by uterine deletion of Vangl2, a key planar cell polarity component (PCP). We found that HB-EGF binds to ERBB2 and ERBB3 to recruit VANGL2 for tyrosine phosphorylation. Using in vivo models, we show that uterine VAGL2 tyrosine phosphorylation is suppressed in Erbb2/Erbb3 double conditional knockout mice. In this context, severe implantation defects in these mice lend support to the critical role of HB-EGF-ERBB2/3-VANGL2 in establishing a two-way dialogue between the blastocyst and uterus. In addition, the result addresses an outstanding question how VANGL2 is activated during implantation. Taken together, these observations reveal that HB-EGF regulates the implantation process by influencing uterine epithelial cell polarity comprising VANGL2.


Assuntos
Polaridade Celular , Implantação do Embrião , Animais , Feminino , Camundongos , Gravidez , Polaridade Celular/fisiologia , Implantação do Embrião/fisiologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Camundongos Knockout , Transdução de Sinais , Tirosina
3.
J Biol Chem ; 300(4): 106792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403249

RESUMO

First described in the milkweed bug Oncopeltus fasciatus, planar cell polarity (PCP) is a developmental process essential for embryogenesis and development of polarized structures in Metazoans. This signaling pathway involves a set of evolutionarily conserved genes encoding transmembrane (Vangl, Frizzled, Celsr) and cytoplasmic (Prickle, Dishevelled) molecules. Vangl2 is of major importance in embryonic development as illustrated by its pivotal role during neural tube closure in human, mouse, Xenopus, and zebrafish embryos. Here, we report on the molecular and functional characterization of a Vangl2 isoform, Vangl2-Long, containing an N-terminal extension of about 50 aa, which arises from an alternative near-cognate AUA translation initiation site, lying upstream of the conventional start codon. While missing in Vangl1 paralogs and in all invertebrates, including Drosophila, this N-terminal extension is conserved in all vertebrate Vangl2 sequences. We show that Vangl2-Long belongs to a multimeric complex with Vangl1 and Vangl2. Using morpholino oligonucleotides to specifically knockdown Vangl2-Long in Xenopus, we found that this isoform is functional and required for embryo extension and neural tube closure. Furthermore, both Vangl2 and Vangl2-Long must be correctly expressed for the polarized distribution of the PCP molecules Pk2 and Dvl1 and for centriole rotational polarity in ciliated epidermal cells. Altogether, our study suggests that Vangl2-Long significantly contributes to the pool of Vangl2 molecules present at the plasma membrane to maintain PCP in vertebrate tissues.


Assuntos
Polaridade Celular , Proteínas Desgrenhadas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Animais , Humanos , Camundongos , Proteínas de Transporte , Proteínas Desgrenhadas/metabolismo , Proteínas Desgrenhadas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Biossíntese de Proteínas , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Xenopus laevis , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
4.
FASEB J ; 38(1): e23346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095297

RESUMO

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Assuntos
Deficiência de Ácido Fólico , Defeitos do Tubo Neural , Animais , Camundongos , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridade Celular/genética , Fibroblastos/metabolismo , Via de Sinalização Wnt , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Deficiência de Ácido Fólico/metabolismo
5.
Semin Cell Dev Biol ; 125: 37-44, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34736823

RESUMO

Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/ß-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/ß-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/ß-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/ß-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.


Assuntos
Proteínas Wnt , Via de Sinalização Wnt , Polaridade Celular/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
6.
Development ; 148(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500317

RESUMO

Pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner.


Assuntos
Endocitose , Espaço Intracelular/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Tubo Neural/embriologia , Animais , Membrana Celular/metabolismo , Polaridade Celular , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Camundongos Endogâmicos C57BL , Modelos Biológicos , Morfogênese , Tubo Neural/metabolismo , Tubo Neural/ultraestrutura , Células Neuroepiteliais/metabolismo , Prosencéfalo/metabolismo , Ligação Proteica , Xenopus , Proteínas de Xenopus/metabolismo
7.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34104942

RESUMO

Epithelial cilia, whether motile or primary, often display an off-center planar localization within the apical cell surface. This form of planar cell polarity (PCP) involves the asymmetric positioning of the ciliary basal body (BB). Using the monociliated epithelium of the embryonic zebrafish floor-plate, we investigated the dynamics and mechanisms of BB polarization by live imaging. BBs were highly motile, making back-and-forth movements along the antero-posterior (AP) axis and contacting both the anterior and posterior membranes. Contacts exclusively occurred at junctional Par3 patches and were often preceded by membrane digitations extending towards the BB, suggesting focused cortical pulling forces. Accordingly, BBs and Par3 patches were linked by dynamic microtubules. Later, BBs became less motile and eventually settled at posterior apical junctions enriched in Par3. BB posterior positioning followed Par3 posterior enrichment and was impaired upon Par3 depletion or disorganization of Par3 patches. In the PCP mutant vangl2, BBs were still motile but displayed poorly oriented membrane contacts that correlated with Par3 patch fragmentation and lateral spreading. Thus, we propose an unexpected function for posterior Par3 enrichment in controlling BB positioning downstream of the PCP pathway.


Assuntos
Corpos Basais/metabolismo , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Transporte/genética , Polaridade Celular , Feminino , Masculino , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Transcriptoma , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463728

RESUMO

The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Membrana/metabolismo , Animais , Padronização Corporal/fisiologia , Diagnóstico por Imagem/métodos , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/fisiologia , Células Epidérmicas/metabolismo , Células Epidérmicas/fisiologia , Epiderme/metabolismo , Epiderme/fisiologia , Epitélio/metabolismo , Epitélio/fisiologia , Receptores Frizzled/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/metabolismo , Tubo Neural/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Traqueia/metabolismo , Traqueia/fisiologia
9.
Exp Eye Res ; 244: 109947, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815793

RESUMO

The non-canonical Wnt pathway is an evolutionarily conserved pathway essential for tissue patterning and development across species and tissues. In mammals, this pathway plays a role in neuronal migration, dendritogenesis, axon growth, and synapse formation. However, its role in development and synaptogenesis of the human retina remains less established. In order to address this knowledge gap, we analyzed publicly available single-cell RNA sequencing (scRNAseq) datasets for mouse retina, human retina, and human retinal organoids over multiple developmental time points during outer retinal maturation. We identified ligands, receptors, and mediator genes with a putative role in retinal development, including those with novel or species-specific expression, and validated this expression using fluorescence in situ hybridization (FISH). By quantifying outer nuclear layer (ONL) versus inner nuclear layer (INL) expression, we provide evidence for the differential expression of certain non-canonical Wnt signaling components in the developing mouse and human retina during outer plexiform layer (OPL) development. Importantly, we identified distinct expression patterns of mouse and human FZD3 and WNT10A, as well as previously undescribed expression, such as for mouse Wnt2b in Chat+ starburst amacrine cells. Human retinal organoids largely recapitulated the human non-canonical Wnt pathway expression. Together, this work provides the basis for further study of non-canonical Wnt signaling in mouse and human retinal development and synaptogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Retina , Via de Sinalização Wnt , Animais , Camundongos , Humanos , Retina/metabolismo , Retina/crescimento & desenvolvimento , Retina/embriologia , Via de Sinalização Wnt/fisiologia , Hibridização in Situ Fluorescente , Organoides/metabolismo , Camundongos Endogâmicos C57BL
10.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34521753

RESUMO

Directed trophoblast migration toward the maternal mesometrial pole is critical for placentation and pregnancy success. Trophoblasts replace maternal arterial endothelial cells to increase blood supply to the placenta. Inferior trophoblast invasion results in pregnancy complications including preeclampsia, intrauterine growth restriction, miscarriage, and preterm delivery. The maternal chemotactic factors that direct trophoblast migration and the mechanism by which trophoblasts respond to these factors are not clearly understood. Here, we show that invasive trophoblasts deficient in Vangl2, a core planar cell polarity (PCP) component, fail to invade in maternal decidua, and this deficiency results in middle-gestational fetal demise. Previously, we have shown that tightly regulated endocannabinoids via G protein-coupled cannabinoid receptor CB1 are critical to the invasion of trophoblasts called spiral artery trophoblast giant cells (SpA-TGCs). We find that CB1 directly interacts with VANGL2. Trophoblast stem cells devoid of Cnr1 and/or Vangl2 show compromised cell migration. To study roles of VANGL2 and CB1 in trophoblast invasion in vivo, we conditionally deleted Cnr1 (coding CB1) and Vangl2 in progenitors of SpA-TGCs using trophoblast-specific protein alpha (Tpbpa)-Cre. We observed that signaling mediated by VANGL2 and CB1 restrains trophoblasts from random migration by keeping small GTPases quiescent. Our results show that organized PCP in trophoblasts is indispensable for their directed movement and that CB1 exerts its function by direct interaction with membrane proteins other than its canonical G protein-coupled receptor role.


Assuntos
Canabinoides/metabolismo , Polaridade Celular/fisiologia , Placenta/metabolismo , Placenta/fisiologia , Placentação/fisiologia , Transdução de Sinais/fisiologia , Aborto Espontâneo/metabolismo , Aborto Espontâneo/fisiopatologia , Animais , Artérias/metabolismo , Artérias/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Endocanabinoides/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Trofoblastos/metabolismo , Trofoblastos/fisiologia
11.
Dev Dyn ; 252(8): 1068-1076, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36780134

RESUMO

The local signaling mechanism which directly assembles and maintains glutamatergic synapses has not been well understood. Glutamatergic synapses are made of presynaptic and postsynaptic compartments with distinct sets of proteins. The planar cell polarity (PCP) pathway is highly conserved and responsible for establishing and maintaining the cell and tissue polarity along the tissue plane. The six core PCP proteins form antagonizing complexes within the cells and asymmetric intercellular complexes across neighboring cells which regulate cell-cell interactions during planar polarity signaling. Accumulating evidence suggests that the PCP proteins play essential roles in glutamatergic synapse assembly, maintenance and function in the brain. This review summarizes the key evidence that PCP proteins may be responsible for the formation and stability of the vast majority of the glutamatergic synapses in hippocampus and medial prefrontal cortex, the progress in understanding the mechanisms of how PCP proteins assemble and maintain glutamatergic synapses and initial insights on how disruption of the function of the PCP proteins can lead to neurodegenerative, neurodevelopmental and neuropsychiatric disorders. The PCP proteins may be the missing pieces of a long-standing puzzle and filling this gap of knowledge may provide the basis for understanding many unsolved questions in synapse biology.


Assuntos
Polaridade Celular , Transdução de Sinais , Polaridade Celular/fisiologia , Proteínas de Membrana/metabolismo , Sinapses/metabolismo
12.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34806749

RESUMO

The orientation of epithelial cells in the plane of the tissue, known as planar cell polarity (PCP), is regulated by interactions of asymmetrically localized PCP protein complexes. In the Xenopus neural plate, Van Gogh-like2 (Vangl2) and Prickle3 (Pk3) proteins form a complex at the anterior cell boundaries, but how this complex is regulated in vivo remains largely unknown. Here, we use proximity biotinylation and crosslinking approaches to show that Vangl2-Pk3 association is inhibited by Frizzled3 (Fz3, also known as Fzd3), a core PCP protein that is specifically expressed in the neuroectoderm and is essential for the establishment of PCP in this tissue. This inhibition required Fz3-dependent Vangl2 phosphorylaton. Consistent with our observations, the complex of Pk3 with nonphosphorylatable Vangl2 did not polarize in the neural plate. These findings provide evidence for in vivo regulation of Vangl2-Pk3 complex formation and localization by a Frizzled receptor.


Assuntos
Polaridade Celular , Receptores Frizzled , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana , Placa Neural , Proteínas de Xenopus , Animais , Fatores de Transcrição , Xenopus laevis
13.
Biochem Biophys Res Commun ; 673: 9-15, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37352572

RESUMO

Nephronophthisis (NPH), an autosomal recessive ciliopathy, results from mutations in more than 20 different genes (NPHPs). These gene products form protein complexes that regulate trafficking within the cilium, a microtubular structure that plays a crucial role in developmental processes. Several NPHPs, including NPHP2/Inversin, have been linked to extraciliary functions. In addition to defining a specific segment of primary cilia (Inversin compartment), NPHP2 participates in planar cell polarity (PCP) signaling along with Dishevelled and Vangl family members. We used the mutant zebrafish line invssa36157, containing a stop codon at amino acid 314, to characterize tissue-specific functions of zebrafish Nphp2. The invssa36157 line exhibits mild ciliopathy phenotypes and increased glomerular and cloaca cyst formation. These mutants showed enhanced susceptibility to the simultaneous depletion of the nphp1/nphp2/nphp8 module, known to be involved in the cytoskeletal organization of epithelial cells. Notably, simultaneous depletion of zebrafish nphp1 and vangl2 led to a pronounced increase in cloaca malformations in the invssa36157 mutant embryos. Time-lapse imaging showed that the pronephric cells correctly migrated towards the ectodermal cells in these embryos, but failed to form the cloaca opening. Despite these abnormal developments, cellular fate does not seem to be affected in nphp1 and vangl2 MO-depleted invssa36157 mutants, as shown by in situ hybridizations for markers of pronephros and ectodermal cell development. However, significantly reduced apoptotic activity was observed in this double knockdown model, signifying the role of apoptosis in cloacal morphogenesis. Our findings underscore the critical interplay of nphp1, nphp2/Inversin, and vangl2 in orchestrating normal cloaca formation in zebrafish, shedding light on the complex molecular mechanisms underlying ciliopathy-associated phenotypes.


Assuntos
Cloaca , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cloaca/metabolismo , Polaridade Celular , Proteínas de Membrana/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Cell Mol Life Sci ; 79(12): 586, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369349

RESUMO

Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.


Assuntos
Defeitos do Tubo Neural , Neurulação , Humanos , Neurulação/genética , Gastrulação/genética , Polaridade Celular/genética , Via de Sinalização Wnt/genética , Tubo Neural/metabolismo , Morfogênese/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(30): 18037-18048, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32641508

RESUMO

Axon-axon interactions are essential for axon guidance during nervous system wiring. However, it is unknown whether and how the growth cones communicate with each other while sensing and responding to guidance cues. We found that the Parkinson's disease gene, leucine-rich repeat kinase 2 (LRRK2), has an unexpected role in growth cone-growth cone communication. The LRRK2 protein acts as a scaffold and induces Frizzled3 hyperphosphorylation indirectly by recruiting other kinases and also directly phosphorylates Frizzled3 on threonine 598 (T598). In LRRK1 or LRRK2 single knockout, LRRK1/2 double knockout, and LRRK2 G2019S knockin, the postcrossing spinal cord commissural axons are disorganized and showed anterior-posterior guidance errors after midline crossing. Growth cones from either LRRK2 knockout or G2019S knockin mice showed altered interactions, suggesting impaired communication. Intercellular interaction between Frizzled3 and Vangl2 is essential for planar cell polarity signaling. We show here that this interaction is regulated by phosphorylation of Frizzled3 at T598 and can be regulated by LRRK2 in a kinase activity-dependent way. In the LRRK1/2 double knockout or LRRK2 G2019S knockin, the dopaminergic axon bundle in the midbrain was significantly widened and appeared disorganized, showing aberrant posterior-directed growth. Our findings demonstrate that LRRK2 regulates growth cone-growth cone communication in axon guidance and that both loss-of-function mutation and a gain-of-function mutation (G2019S) cause axon guidance defects in development.


Assuntos
Axônios/metabolismo , Receptores Frizzled/metabolismo , Cones de Crescimento/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neurogênese/genética , Transdução de Sinais , Animais , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Modelos Biológicos , Mutação , Neurônios/metabolismo , Fosforilação , Medula Espinal/citologia , Medula Espinal/metabolismo
16.
Development ; 146(22)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31719041

RESUMO

Lateral zebrafish hypoblast cells initiate dorsal convergence near mid-gastrulation and exhibit non-polarized morphologies, limited cell-cell contact and indirect migration trajectories. By late gastrulation, mesodermal cells become packed as they engage in planar cell polarity (PCP)-dependent movement. Here, we aimed to understand this transition in cell behavior by examining the relationship between protrusion dynamics and establishment of PCP and directed migration. We found that wild-type cells undergo a reduction in bleb protrusions near late gastrulation accompanied by a VANGL planar cell polarity protein 2 (Vangl2)-regulated increase in filopodia number and polarization. Manipulation of blebs is sufficient to interfere with PCP and directed migration. We show that Vangl2, fibronectin and cadherin 2 function to suppress blebbing. Vangl2 maintains ezrin b (Ezrb) protein levels and higher Ezrb activation rescues defective mediolateral cell alignment and migration paths in vangl2 mutant embryos. Transplantation experiments show that loss of vangl2 disrupts protrusion formation cell-autonomously while fibronectin acts non-autonomously. We propose that dorsal convergence requires the coordinated action of Vangl2, Ezrb and cell-adhesion proteins to inhibit blebs and promote polarized actin-rich protrusive activity and PCP.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Gástrula/metabolismo , Gastrulação , Proteínas de Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Movimento Celular , Polaridade Celular , Cruzamentos Genéticos , Fibronectinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Fenótipo , Pseudópodes/metabolismo , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia
17.
Cell Tissue Res ; 387(1): 95-109, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738156

RESUMO

The pattern of blood fluid shear stress (FSS) is considered the main factor that affects ciliogenesis in human umbilical vein endothelial cells (hUVECs), the underlying mechanism is unclear. Microfluidic chamber experiments were carried out to load hUVECs with low fluid shear stress (LSS, 0.1 dynes/cm2) or high fluid shear stress (HSS, 15 dynes/cm2). Van Gogh2 (Vangl2), a core protein in the planar cell polarity (PCP) pathway, was silenced and overexpressed in hUVECs. Immunofluorescence analysis showed that primary cilia assemble under LSS while disassembling under HSS. Vangl2 expression was consistent with cilia assembly, and its localization showed a polar distribution under LSS. Furthermore, the average number of ciliated cells and primary cilia length were increased in the Vangl2 overexpressing cell lines (the OE group) but decreased in the Vangl2 silenced cell lines (the SH group). When these cells were loaded with different FSS, more ciliated cells with longest primary cilia were observed in the LSS loaded OE group compared with those in the other groups. Immunoprecipitation showed that the interaction between Bardet-Biedl syndrome 8 (BBS8) and Vangl2 was enhanced following LSS loading compared to that under HSS. However, the interactions between phosphorylated dishevelled segment polarity protein 2 (pDvl2), kinesin family member 2a (Kif2a), and polo-like kinase 1 (Plk1) and Vangl2 were restrained following LSS loading. Overall, the results indicated that Vangl2 played a significant role during LSS-induced primary cilia assembly by recruiting BBS to promote the apical docking of basal bodies and by restraining Dvl2 phosphorylation from reducing primary cilia disassembly.


Assuntos
Cílios/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Resistência ao Cisalhamento
18.
Biochem J ; 478(7): 1321-1332, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33684218

RESUMO

Scribble is a critical cell polarity regulator that has been shown to work as either an oncogene or tumor suppressor in a context dependent manner, and also impacts cell migration, tissue architecture and immunity. Mutations in Scribble lead to neural tube defects in mice and humans, which has been attributed to a loss of interaction with the planar cell polarity regulator Vangl2. We show that the Scribble PDZ domains 1, 2 and 3 are able to interact with the C-terminal PDZ binding motif of Vangl2 and have now determined crystal structures of these Scribble PDZ domains bound to the Vangl2 peptide. Mapping of mammalian neural tube defect mutations reveal that mutations located distal to the canonical PDZ domain ligand binding groove can not only ablate binding to Vangl2 but also disrupt binding to multiple other signaling regulators. Our findings suggest that PDZ-associated neural tube defect mutations in Scribble may not simply act in a Vangl2 dependent manner but as broad-spectrum loss of function mutants by disrupting the global Scribble-mediated interaction network.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Defeitos do Tubo Neural/patologia , Domínios PDZ , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Supressoras de Tumor/genética
19.
BMC Biol ; 19(1): 134, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210294

RESUMO

BACKGROUND: Gene-environment interactions are likely to underlie most human birth defects. The most common known environmental contributor to birth defects is prenatal alcohol exposure. Fetal alcohol spectrum disorders (FASD) describe the full range of defects that result from prenatal alcohol exposure. Gene-ethanol interactions underlie susceptibility to FASD, but we lack a mechanistic understanding of these interactions. Here, we leverage the genetic tractability of zebrafish to address this problem. RESULTS: We first show that vangl2, a member of the Wnt/planar cell polarity (Wnt/PCP) pathway that mediates convergent extension movements, strongly interacts with ethanol during late blastula and early gastrula stages. Embryos mutant or heterozygous for vangl2 are sensitized to ethanol-induced midfacial hypoplasia. We performed single-embryo RNA-seq during early embryonic stages to assess individual variation in the transcriptional response to ethanol and determine the mechanism of the vangl2-ethanol interaction. To identify the pathway(s) that are disrupted by ethanol, we used these global changes in gene expression to identify small molecules that mimic the effects of ethanol via the Library of Integrated Network-based Cellular Signatures (LINCS L1000) dataset. Surprisingly, this dataset predicted that the Sonic Hedgehog (Shh) pathway inhibitor, cyclopamine, would mimic the effects of ethanol, despite ethanol not altering the expression levels of direct targets of Shh signaling. Indeed, we found that ethanol and cyclopamine strongly, but indirectly, interact to disrupt midfacial development. Ethanol also interacts with another Wnt/PCP pathway member, gpc4, and a chemical inhibitor of the Wnt/PCP pathway, blebbistatin, phenocopies the effect of ethanol. By characterizing membrane protrusions, we demonstrate that ethanol synergistically interacts with the loss of vangl2 to disrupt cell polarity required for convergent extension movements. CONCLUSIONS: Our results show that the midfacial defects in ethanol-exposed vangl2 mutants are likely due to an indirect interaction between ethanol and the Shh pathway. Vangl2 functions as part of a signaling pathway that regulates coordinated cell movements during midfacial development. Ethanol exposure alters the position of a critical source of Shh signaling that separates the developing eye field into bilateral eyes, allowing the expansion of the midface. Collectively, our results shed light on the mechanism by which the most common teratogen can disrupt development.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Peixe-Zebra , Animais , Polaridade Celular , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Proteínas Hedgehog/genética , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Via de Sinalização Wnt , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
20.
Development ; 145(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30327324

RESUMO

During zebrafish gastrulation the planar cell polarity (PCP) protein Vang-like 2 (Vangl2) regulates the polarization of cells that are engaged in directed migration. However, it is unclear whether Vangl2 influences membrane-protrusive activities in migrating gastrula cells and whether these processes require the fibronectin extracellular matrix. Here, we report that Vangl2 modulates the formation and polarization of actin-rich filopodia-like and large lamellipodia-like protrusions in ectodermal cells. By contrast, disrupted Glypican4/PCP signaling affects protrusion polarity but not protrusion number or directed migration. Analysis of fluorescent fusion protein expression suggests that there is widespread Vangl2 symmetry in migrating cells, but there is enrichment at membrane domains that are developing large protrusions compared with non-protrusive domains. We show that the fibronectin extracellular matrix is essential for cell-surface Vangl2 expression, membrane-protrusive activity and directed migration. Manipulation of fibronectin protein levels rescues protrusion and directed migration phenotypes in vangl2 mutant embryos, but it is not sufficient to restore either PCP, or convergence and extension movements. Together, our findings identify distinct roles for Vangl2 and Glypican4/PCP signaling during membrane protrusion formation and demonstrate that cell-matrix interactions underlie Vangl2-dependent regulation of protrusive activities in migrating gastrula cells.


Assuntos
Movimento Celular , Extensões da Superfície Celular/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Polaridade Celular , Embrião não Mamífero/metabolismo , Mutação/genética , Fenótipo , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA