Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2316143121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861595

RESUMO

Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.


Assuntos
Toxinas Bacterianas , Vibrio vulnificus , Proteínas rab de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Células HEK293 , Camundongos Endogâmicos ICR , Proteólise , Proteínas rab de Ligação ao GTP/metabolismo , Vibrioses/microbiologia , Vibrioses/metabolismo , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidade
2.
Mol Microbiol ; 119(1): 59-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420630

RESUMO

The marine pathogen Vibrio vulnificus senses and responds to environmental stimuli via two chemosensory systems and 42-53 chemoreceptors. Here, we present an analysis of the V. vulnificus Aer2 chemoreceptor, VvAer2, which is the first V. vulnificus chemoreceptor to be characterized. VvAer2 is related to the Aer2 receptors of other gammaproteobacteria, but uncharacteristically contains three PAS domains (PAS1-3), rather than one or two. Using an E. coli chemotaxis hijack assay, we determined that VvAer2, like other Aer2 receptors, senses and responds to O2 . All three VvAer2 PAS domains bound pentacoordinate b-type heme and exhibited similar O2 affinities. PAS2 and PAS3 both stabilized O2 via conserved Iß-Trp residues, but PAS1, which was easily oxidized in vitro, was unaffected by Iß-Trp replacement. Our results support a model in which PAS1 is largely dispensable for O2 -mediated signaling, whereas PAS2 modulates PAS3 signaling, and PAS3 signals to the downstream domains. Each PAS domain appeared to be positionally optimized, because PAS swapping caused altered signaling properties, and neither PAS1 nor PAS2 could replace PAS3. Our findings strengthen previous conclusions that Aer2 receptors are O2 sensors, but with distinct N-terminal domain arrangements that facilitate, modulate and tune responses based on environmental signals.


Assuntos
Escherichia coli , Vibrio vulnificus , Escherichia coli/metabolismo , Vibrio vulnificus/metabolismo , Heme/metabolismo , Proteínas de Transporte/metabolismo , Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo
3.
Appl Environ Microbiol ; 90(6): e0053924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809043

RESUMO

Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.


Assuntos
Antibacterianos , Baías , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/crescimento & desenvolvimento , Baías/microbiologia , Antibacterianos/farmacologia , Estudos Longitudinais , Maryland , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Vibrioses/microbiologia , Humanos
4.
Appl Environ Microbiol ; 90(6): e0006524, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38775491

RESUMO

CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) is a gene knockdown method that uses a deactivated Cas9 protein (dCas9) that binds a specific gene target locus dictated by an encoded guide RNA (sgRNA) to block transcription. Mobile-CRISPRi is a suite of modular vectors that enable CRISPRi knockdowns in diverse bacteria by integrating IPTG-inducible dcas9 and sgRNA genes into the genome using Tn7 transposition. Here, we show that the Mobile-CRISPRi system functions robustly and specifically in multiple Vibrio species: Vibrio cholerae, Vibrio fischeri, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio campbellii. We demonstrate efficacy by targeting both essential and non-essential genes that function to produce defined, measurable phenotypes: bioluminescence, quorum sensing, cell division, and growth arrest. We anticipate that Mobile-CRISPRi will be used in Vibrio species to systematically probe gene function and essentiality in various behaviors and native environments.IMPORTANCEThe genetic manipulation of bacterial genomes is an invaluable tool in experimental microbiology. The development of CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) tools has revolutionized genetics in many organisms, including bacteria. Here, we optimized the use of Mobile-CRISPRi in five Vibrio species, each of which has significant impacts on marine environments and organisms that include squid, shrimp, shellfish, finfish, corals, and multiple of which pose direct threats to human health. The Mobile-CRISPRi technology is easily adaptable, moveable from strain to strain, and enables researchers to selectively turn off gene expression. Our experiments demonstrate Mobile-CRISPRi is effective and robust at repressing gene expression of both essential and non-essential genes in Vibrio species.


Assuntos
Vibrio vulnificus , Vibrio , Vibrio/genética , Vibrio vulnificus/genética , Vibrio parahaemolyticus/genética , Regulação Bacteriana da Expressão Gênica , Sistemas CRISPR-Cas , Vibrio cholerae/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Silenciamento de Genes , Aliivibrio fischeri/genética
5.
BMC Microbiol ; 24(1): 37, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279108

RESUMO

BACKGROUND: Vibrio vulnificus exists as one of the most serious foodborne pathogens for humans, and rapid and sensitive detection methods are needed to control its infections. As an emerging method, The Loop-Mediated Isothermal Amplification (LAMP) assay has been applied to the early detection of various foodborne pathogens due to its high efficiency, but sample preprocessing still prolongs the complete detection. To optimize the detection process, our study established a novel sample preprocessing method that was more efficient compared to common methods. RESULT: Using V. vulnificus as the detecting pathogen, the water-lysis-based detecting LAMP method shortened the preprocessing time to ≤ 1 min with 100% LAMP specificity; the detection limits of the LAMP assay were decreased to 1.20 × 102 CFU/mL and 1.47 × 103 CFU/g in pure culture and in oyster, respectively. Furthermore, the 100% LAMP specificity and high sensitivity of the water-lysis method were also obtained on detecting V. parahaemolyticus, V. alginolyticus, and P. mirabilis, revealing its excellent LAMP adaption with improvement in sensitivity and efficiency. CONCLUSION: Our study provided a novel LAMP preprocessing method that was more efficient compared to common methods and possessed the practical potential for LAMP application in the future.


Assuntos
Técnicas de Diagnóstico Molecular , Vibrio vulnificus , Humanos , Vibrio vulnificus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Água , Manejo de Espécimes , Sensibilidade e Especificidade
6.
Microb Pathog ; 186: 106498, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097116

RESUMO

Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.


Assuntos
Anguilla , Doenças dos Peixes , Vibrioses , Vibrio vulnificus , Animais , Vibrio vulnificus/genética , Anguilla/genética , Anguilla/microbiologia , Virulência/genética , RNA-Seq , Doenças dos Peixes/microbiologia
7.
Environ Sci Technol ; 58(19): 8169-8181, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690750

RESUMO

Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.


Assuntos
Vibrio vulnificus , Vibrio vulnificus/genética , Incêndios Florestais , Expressão Gênica
8.
J Infect Chemother ; 30(9): 867-875, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38462174

RESUMO

INTRODUCTION: Gallic acid (GA) has a good therapeutic effect in bacteriological inhibition and plays a variety of functions in maintaining the stability of the immune system. The aim of the present study was to investigate the effect of GA on the bactericidal activity of macrophages against Vibrio vulnificus (Vv). METHODS: A cell counting kit-8 (CCK-8) assay was carried out to test the cytotoxicity of GA on J774A.1 cells. Concentration of proinflammatory cytokines in J774A.1 cells were evaluated by ELISA. The internalization and degradation of Vv in the phagosomes were observed by transmission electron microscopy (TEM). The phagosome acidification and phagolysosome formation were detected to evaluate the bacteria-clearing function of J774A.1 cells. The bactericidal activity of GA in vivo was also investigated by collecting the survival time of Vv infected mice and observing the inflammatory infiltration of organs. RESULTS: Our results demonstrated that GA at 50 µM significantly inhibited the proinflammatory cytokines levels, promoted phagosome acidification and phagolysosome formation in J774A.1 cells with Vv infection. This may be related to the activation of NLRP3/mTOR signaling pathway. Additionally, GA treatment improves the survival and bactericidal activity of mice infected with Vv. CONCLUSIONS: In summary, GA exerts bactericidal activity against Vv infection by regulating the formation and acidification of phagocytic lysosomes in macrophages.


Assuntos
Ácido Gálico , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fagossomos , Transdução de Sinais , Serina-Treonina Quinases TOR , Vibrio vulnificus , Ácido Gálico/farmacologia , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Vibrio vulnificus/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Feminino
9.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593634

RESUMO

Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.


Assuntos
Vibrioses/microbiologia , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Animais , Biodiversidade , Ecossistema , Doenças Endêmicas , Florida , Marcadores Genéticos/genética , Humanos , Ostreidae/microbiologia , Fenótipo , Filogenia , Virulência/genética
10.
Foodborne Pathog Dis ; 21(7): 458-466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38551156

RESUMO

Vibrio vulnificus is a hazardous foodborne pathogen responsible for approximately 95% of seafood-related deaths. This highlights the urgent requirement for specialized detection tools to be developed and used by food enterprises and food safety authorities. The DETECTR (DNA endonuclease targeted CRISPR trans reporter) system that combines CRISPR/Cas and recombinase polymerase amplification (RPA) has been utilized to develop a molecular detection assay for V. vulnificus. However, because the incompatibility between RPA and Cas12a cleavage has not been addressed, it is a two-step assay that lacks convenience and presents contamination risk. Here, we developed a one-step RPA-CRISPR assay for V. vulnificus using a special crRNA targeting a sequence with a suboptimal protospacer adjacent motif (PAM). The entire assay, conducted at 37°C, takes only 40-60 min, yields results visualized under blue light, and exhibits exceptional specificity and sensitivity (detecting 4 pathogen genome copies per reaction). This study offers a valuable tool for detecting V. vulnificus, aiding in foodborne infection prevention, and exemplifies one-step RPA-CRISPR assays managing Cas-cleavage activity through PAM adjustments.


Assuntos
Sistemas CRISPR-Cas , Vibrio vulnificus , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/genética , Microbiologia de Alimentos , Alimentos Marinhos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Recombinases/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sensibilidade e Especificidade
11.
Chin J Traumatol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38981821

RESUMO

PURPOSE: Vibrio vulnificus (V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body's infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistant V. Vulnificus and the protection of their vital organs. METHODS: An increasing concentration gradient method was used to induce multidrug-resistant V. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistant V. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis. RESULTS: In mice infected with multidrug-resistant V. Vulnificus, bergamottin prolonged survival (p = 0.014), reduced the serum creatinine (p = 0.002), urea nitrogen (p = 0.030), aspartate aminotransferase (p = 0.029), and alanine aminotransferase (p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1ß: p = 0.010, IL-6: p = 0.029, TNF-α: p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1ß, IL-6, TNF-α in liver (IL-1ß: p = 0.010, IL-6: p = 0.011, TNF-α: p = 0.037) and kidney (IL-1ß: p = 0.016, IL-6: p = 0.011, TNF-α: p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistant V. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid (p = 0.225), liver (p = 0.186), or kidney (p = 0.637). CONCLUSION: Bergamottin enhances the tolerance of mice to multidrug-resistant V. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies for V. Vulnificus.

12.
J Cell Physiol ; 238(10): 2316-2334, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37724600

RESUMO

Vibrio vulnificus, a gram-negative bacterium, causes serious wound infections and septicemia. Once it develops into early phase sepsis, hyperinflammatory immune responses result in poor prognosis in patients. The present study aimed to examine the possible underlying pathogenic mechanism and explore potential agents that could protect against V. vulnificus cytotoxicity. Here, we report that infection of mouse macrophages with V. vulnificus triggers antiphagocytic effects and pyroptotic inflammation via ATP-mediated purinergic P2X7 receptor (P2X7R) signaling. V. vulnificus promoted P2X7-dependent nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 translocation, modulating the expression of the inflammasome sensor NLR family pyrin domain containing 3 (NLRP3), adaptor apoptosis-associated speck-like protein containing a card (ASC), and pyroptotic protein gasdermin D (GSDMD) in mouse macrophages. V. vulnificus induced the NLRP3/caspase-1 inflammasome signaling complex expression that drives GSDMD transmembrane pore formation and secretion of interleukin (IL)-1ß, IL-18, and macrophage inflammatory protein-2 (MIP-2). This effect was blocked by P2X7R antagonists, indicating that the P2X7R mediates GSDMD-related pyroptotic inflammation in macrophages through the NF-κB/NLRP3/caspase-1 signaling pathway. Furthermore, blockade of P2X7R reduced V. vulnificus-colony-forming units in the spleen, immune cell infiltration into the skin and lung tissues, and serum concentrations of IL-1ß, IL-18, and MIP-2 in mice. These results indicate that P2X7R plays a vital role in mediating phagocytosis by macrophages and pyroptotic inflammation during V. vulnificus infection and provides new opportunities for therapeutic intervention in bacterial infections.

13.
Appl Environ Microbiol ; 89(7): e0031823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318344

RESUMO

Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.


Assuntos
Bivalves , Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Água , Ostreidae/microbiologia , Bactérias/genética
14.
Appl Environ Microbiol ; 89(6): e0030723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222620

RESUMO

Incidence of vibriosis is rising globally, with evidence that changing climatic conditions are influencing environmental factors that enhance growth of pathogenic Vibrio spp. in aquatic ecosystems. To determine the impact of environmental factors on occurrence of pathogenic Vibrio spp., samples were collected in the Chesapeake Bay, Maryland, during 2009 to 2012 and 2019 to 2022. Genetic markers for Vibrio vulnificus (vvhA) and Vibrio parahaemolyticus (tlh, tdh, and trh) were enumerated by direct plating and DNA colony hybridization. Results confirmed seasonality and environmental parameters as predictors. Water temperature showed a linear correlation with vvhA and tlh, and two critical thresholds were observed, an initial increase in detectable numbers (>15°C) and a second increase when maximum counts were recorded (>25°C). Temperature and pathogenic V. parahaemolyticus (tdh and trh) were not strongly correlated; however, the evidence showed that these organisms persist in oyster and sediment at colder temperatures. Salinity (10 to 15 ppt), total chlorophyll a (5 to 25 µg/L), dissolved oxygen (5 to 10 mg/L), and pH (8) were associated with increased abundance of vvhA and tlh. Importantly, a long-term increase in Vibrio spp. numbers was observed in water samples between the two collection periods, specifically at Tangier Sound (lower bay), with the evidence suggesting an extended seasonality for these bacteria in the area. Notably, tlh showed a mean positive increase that was ca. 3-fold overall, with the most significant increase observed during the fall. In conclusion, vibriosis continues to be a risk in the Chesapeake Bay region. A predictive intelligence system to assist decision makers, with respect to climate and human health, is warranted. IMPORTANCE The genus Vibrio includes pathogenic species that are naturally occurring in marine and estuarine environments globally. Routine monitoring for Vibrio species and environmental parameters influencing their incidence is critical to provide a warning system for the public when the risk of infection is high. In this study, occurrence of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Chesapeake Bay water, oysters, and sediment samples collected over a 13-year period was analyzed. The results provide a confirmation of environmental predictors for these bacteria, notably temperature, salinity, and total chlorophyll a, and their seasonality of occurrence. New findings refine environmental parameter thresholds of culturable Vibrio species and document a long-term increase in Vibrio populations in the Chesapeake Bay. This study provides a valuable foundation for development of predicative risk intelligence models for Vibrio incidence during climate change.


Assuntos
Ostreidae , Vibrioses , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Clorofila A , Ecossistema , Ostreidae/microbiologia , Vibrioses/epidemiologia , Água
15.
Arch Microbiol ; 205(6): 241, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198473

RESUMO

In recent years, trade liberalisation has led to the spread of antibiotic-resistant bacteria (ARB) in food products. Because ARB has reportedly been found in imported foods, the spread of plasmid-mediated ARB through food products is a concern. Here, we report the complete genome sequences of ESBL-producing Vibrio vulnificus and V. alginolyticus strains harbouring a plasmid isolated from imported seafood. First, V. vulnificus and V. alginolyticus were isolated from purchased frozen and thawed Litopenaeus vannamei shrimp, and genome extraction and sequencing were performed. Hybrid genome assemblies were performed using Unicycler and annotated using DFAST. Then genome analysis was performed using BRIG. Plasmid comparisons showed that the plasmids carried by both Vibrios are remarkably similar and encode the same antibiotic-resistance genes. The 270-310 kb region specific to both Vibrios were isolated in this study and encodes the antibiotic-resistance genes blaCTX-M and qnr. Furthermore, the mobile genetic factors ISEc9, ISVch4, and ISVpa4 are located upstream and downstream of these genes. This is the first report of ESBL-producing V. vulnificus and V. alginolyticus harbouring a common plasmid encoding ISEc9 upstream of blaCTX-M-55 and qnrS2 isolated from imported seafood.


Assuntos
Vibrio vulnificus , Vibrio , Vibrio vulnificus/genética , Antibacterianos/farmacologia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Plasmídeos/genética , Vibrio/genética , Alimentos Marinhos/microbiologia , beta-Lactamases/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-36749680

RESUMO

A Gram-stain-negative, rod-shaped bacterial strain, designated Vibrio floridensis IRLE0018 (=NRRL B-65642=NCTC 14661), was isolated from a cyanobacterial bloom along the Indian River Lagoon (IRL), a large and highly biodiverse estuary in eastern Florida (USA). The results of phylogenetic, biochemical, and phenotypic analyses indicate that this isolate is distinct from species of the genus Vibrio with validly published names and is the closest relative to the emergent human pathogen, Vibrio vulnificus. Here, we present the complete genome sequence of V. floridensis strain IRLE0018 (4 535 135 bp). On the basis of the established average nucleotide identity (ANI) values for the determination of different species (ANI <95 %), strain IRLE0018, with an ANI of approximately 92 % compared with its closest relative, V. vulnificus, represents a novel species within the genus Vibrio. To our knowledge, this represents the first time this species has been described. The results of genomic analyses of V. floridensis IRLE0018 indicate the presence of antibiotic resistance genes and several known virulence factors, however, its pathogenicity profile (e.g. survival in serum, phagocytosis avoidance) reveals limited virulence potential of this species in contrast to V. vulnificus.


Assuntos
Cianobactérias , Vibrio vulnificus , Vibrio , Humanos , Vibrio vulnificus/genética , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Cianobactérias/genética
17.
Fish Shellfish Immunol ; 135: 108651, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863497

RESUMO

Focal adhesion (FA) plays a key role in cell adhesion, migration and antibacterial immune, but it remained unclear in fish. In this study, half-smooth tongue sole Cynoglossus semilaevis were infected with Vibrio vulnificus, and then immune-related protein in the skin, especially for FA signaling pathway were screened and identified by iTRAQ analysis. Results showed that the differentially expressed proteins (DEPs) in skin immune response (eg., ITGA6, FN, COCH, AMBP, COL6A1, COL6A3, COL6A6, LAMB1, LAMC1, FLMNA) were firstly found in FA signaling pathway. Furthermore, the validation analysis of FA-related genes were basically consistent with the iTRAQ data at 36 hpi (r = 0.678, p < 0.01), and their spatio-temporal expressions were confirmed by qPCR analysis. The molecular characterization of vinculin of C. semilaevis was described. This study will provide a new perspective for understanding the molecular mechanism of FA signaling pathway in the skin immune response in marine fish.


Assuntos
Doenças dos Peixes , Linguados , Linguado , Vibrioses , Vibrio , Animais , Vibrio/fisiologia , Adesão Celular , Adesões Focais/metabolismo , Linguado/metabolismo , Imunidade , Proteínas de Peixes
18.
Fish Shellfish Immunol ; 142: 109131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832748

RESUMO

Vibrio vulnificus is an emerging zoonotic pathogen associated with fish farms that is capable of causing a hemorrhagic septicemia known as warm-water vibriosis. According to a recent transcriptomic and functional study, the death of fish due to vibriosis is more related to the inflammatory response of the host than to the tissue lesions caused by the pathogen. In this work, we hypothesize that the RtxA1 toxin (a V. vulnificus toxin of the MARTX (Multifunctional Autoprocessing Repeats in Toxin) family) is the key virulence factor that would directly or indirectly trigger this fatal inflammatory response. Our hypothesis was based on previous studies that showed that rtxA1-deficient mutants maintained their ability to colonize and invade, but were unable to kill fish. To demonstrate this hypothesis, we infected eels (model of fish vibriosis) by immersion with a mutant deficient in RtxA1 production and analyzed their transcriptome in blood, red blood cells and white blood cells during early vibriosis (0, 3 and 12 h post-infection). The transcriptomic results were compared with those obtained in the previous study in which eels were infected with the V. vulnificus parental strain, and were functionally validated. Overall, our results confirm that fish death after V. vulnificus infection is due to an acute, early and atypical inflammatory response triggered by RtxA1 in which red blood cells seem to play a central role. These results could be relevant to other vibriosis as the toxins of this family are widespread in the Vibrio genus.


Assuntos
Toxinas Bacterianas , Vibrioses , Vibrio vulnificus , Animais , Vibrioses/veterinária , Fatores de Virulência/genética
19.
Appl Microbiol Biotechnol ; 107(24): 7571-7580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796305

RESUMO

Antimicrobial peptides (AMPs), such as urechistachykinin I (LRQSQFVGSR-NH2), derived from urechis unicinctus, have demonstrated antimicrobial activities. It exhibits low cytotoxicity and selectivity between microbial and mammalian cells suggesting its potent antimicrobial ability. However, the underlying antimicrobial mechanisms remain unknown. Herein, we elucidated the antibacterial action against Vibrio vulnificus, focusing on the reactive oxygen species (ROS). ROS is crucial for antibiotic-mediated killing and oxidative stress. After treatment with urechistachykinin I, superoxide anions and hydroxyl radicals increase, and the overproduction of ROS leads to oxidative damage and destruction of the redox system. Oxidation of the defense system like glutathione or glutathione peroxidase 4 illustrates the dysfunction of cellular metabolism and induces lipid peroxidation attributed to depolarization and integrity brokerage. Cell death demonstrated these properties, and additional experiments, including iron accumulation, liperfluo, and DNA fragmentation, were promoted. The results demonstrated that urechistachykinin I-induced ferroptosis-like death in Vibrio vulnificus is dependent on ROS production. KEY POINTS: • Urechistachykinin I induce reactive oxygen species production • Urechistachykinin I cause oxidative damaged on the V. vulnificus • Urechistachykinin I ferroptosis-like death in V. vulnificus.


Assuntos
Anti-Infecciosos , Ferroptose , Vibrio vulnificus , Animais , Espécies Reativas de Oxigênio/metabolismo , Vibrio vulnificus/metabolismo , Mamíferos/metabolismo
20.
Adv Exp Med Biol ; 1404: 175-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792876

RESUMO

V. vulnificus, continues being an underestimated yet lethal zoonotic pathogen. In this chapter, we provide a comprehensive review of numerous aspects of the biology, epidemiology, and virulence mechanisms of this poorly understood pathogen. We will emphasize the widespread role of horizontal gene transfer in V. vulnificus specifically virulence plasmids and draw parallels from aquaculture farms to human health. By placing current findings in the context of climate change, we will also contend that fish farms act as evolutionary drivers that accelerate species evolution and the emergence of new virulent groups. Overall, we suggest that on-farm control measures should be adopted both to protect animals from Vibriosis, and also as a public health measure to prevent the emergence of new zoonotic groups.


Assuntos
Vibrioses , Vibrio vulnificus , Humanos , Animais , Vibrio vulnificus/genética , Vibrioses/veterinária , Vibrioses/epidemiologia , Aquicultura , Transferência Genética Horizontal , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA