Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400387

RESUMO

During the learning of a new sensorimotor task, individuals are usually provided with instructional stimuli and relevant information about the target task. The inclusion of haptic devices in the study of this kind of learning has greatly helped in the understanding of how an individual can improve or acquire new skills. However, the way in which the information and stimuli are delivered has not been extensively explored. We have designed a challenging task with nonintuitive visuomotor perturbation that allows us to apply and compare different motor strategies to study the teaching process and to avoid the interference of previous knowledge present in the naïve subjects. Three subject groups participated in our experiment, where the learning by repetition without assistance, learning by repetition with assistance, and task Segmentation Learning techniques were performed with a haptic robot. Our results show that all the groups were able to successfully complete the task and that the subjects' performance during training and evaluation was not affected by modifying the teaching strategy. Nevertheless, our results indicate that the presented task design is useful for the study of sensorimotor teaching and that the presented metrics are suitable for exploring the evolution of the accuracy and precision during learning.


Assuntos
Aprendizagem , Robótica , Humanos , Robótica/métodos , Algoritmos , Destreza Motora
2.
Exp Brain Res ; 237(3): 793-803, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30607472

RESUMO

We explored visuomotor adaptation and spatial generalization of three-dimensional reaching movements performed in a virtual reality environment. We used a multiphase learning paradigm. First, subjects performed reaching movements to six targets without visual feedback (VF) (pre-exposure phase). Next, participants aimed at one target with veridical VF (baseline phase). Immediately after, they were required to adapt their movements to a triaxial visuomotor perturbation (horizontal, vertical, and sagittal translations) between actual hand motion and VF of hand motion in the virtual environment (learning phase). Finally, subjects aimed at the same targets as in the baseline (aftereffect) and pre-exposure phases (generalization) without VF (post-exposure phase). The results revealed spatial axis-dependent visuomotor adaptation capacities. First, subjects showed smaller intertrial variability along the horizontal compared to the sagittal and vertical axes during the baseline and learning phases. Second, although subjects were unaware of the visual distortion, they adapted their movements to each component of the triaxial perturbation. However, they showed reduced learning rate and less persistent adaptation (aftereffect) along the vertical than the horizontal and sagittal axes. Similarly, subjects transferred the newly learned visuomotor association to untrained regions of the workspace, but their average level of generalization was smaller along the vertical than the horizontal and sagittal axes. Collectively, our results suggest that adapting three-dimensional movements to a visual distortion involves distinct processes according to the specific sensorimotor integration demands of moving along each spatial axis. This finding supports the idea that the brain employs a modular decomposition strategy to simplify complex multidimensional visuomotor tasks.


Assuntos
Adaptação Fisiológica/fisiologia , Retroalimentação Sensorial/fisiologia , Generalização Psicológica/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Realidade Virtual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA