Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133735

RESUMO

Alterations of the volatile metabolome (the collection of volatiles present in secretions and other emanations) that occur in response to inflammation can be detected by conspecifics and chemometric analyses. Using a model system where mouse urinary metabolites are altered by treatment with lipopolysaccharide (found in the outer cell membrane of gram-negative bacteria), we hypothesized that alteration of body odor volatiles will vary according to the pathogen responsible for inducing the inflammation. We tested this hypothesis by treating mice with different immunogens that engage different immune signaling pathways. Results suggest that alterations of body odor volatiles resulting from inflammation do contain detailed information about the type of pathogen that instigated the inflammation and these differences are not merely dependent on the severity of the inflammatory event. These results are encouraging for the future of differential medical diagnosis of febrile diseases by analysis of the volatile metabolome. In particular, our data support the possibility that bacterial infections can be differentiated from viral infections such that antibiotic drug stewardship could be drastically improved by reducing unneeded treatments with antibiotics.


Assuntos
Odor Corporal , Odorantes , Animais , Quimiometria , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos
2.
Brain Behav Immun ; 69: 312-320, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29241669

RESUMO

Several studies demonstrate that inflammation affects body odor. Volatile signals associated with inflammation induced by pyrogens like LPS are detectable both by conspecifics and chemical analyses. However, little is known about the mechanisms which translate detection of a foreign molecule or pathogen into a unique body odor, or even how unique that odor may be. Here, we utilized C57BL/6J trained mice to identify the odor of LPS-treated conspecifics to investigate potential pathways between LPS-induced inflammation and changes in body odor, as represented by changes in urine odor. We hypothesized that the change in volatile metabolites could be caused directly by the pro-inflammatory cytokine response mediated by TNF or IL-1ß, or by the compensatory anti-inflammatory response mediated by IL-10. We found that trained biosensors generalized learned LPS-associated odors to TNF-induced odors, but not to IL-1ß or IL-10-induced odors. Analyses of urine volatiles using headspace gas chromatography revealed distinct profiles of volatile compounds for each treatment. Instrumental discrimination relied on a mixture of compounds, including 2-sec-butyl-4,5-dihydrothiazole, cedrol, nonanal, benzaldehyde, acetic acid, 2-ethyl-1-hexanol, and dehydro-exo-brevicomin. Although interpretation of LDA modeling differed from behavioral testing, it does suggest that treatment with TNF, IL-1ß, and LPS can be distinguished by their resultant volatile profiles. These findings indicate there is information found in body odors on the presence of specific cytokines. This result is encouraging for the future of disease diagnosis via analysis of volatiles.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Metaboloma , Compostos Orgânicos Voláteis/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Odorantes
3.
Anal Bioanal Chem ; 410(15): 3491-3506, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29313080

RESUMO

Within the pattern of volatiles released by food products (volatilome), potent odorants are bio-active compounds that trigger aroma perception by activating a complex array of odor receptors (ORs) in the regio olfactoria. Their informative role is fundamental to select optimal post-harvest and storage conditions and preserve food sensory quality. This study addresses the volatile metabolome from high-quality hazelnuts (Corylus avellana L.) from the Ordu region (Turkey) and Tonda Romana from Italy, and investigates its evolution throughout the production chain (post-harvest, industrial storage, roasting) to find functional correlations between technological strategies and product quality. The volatile metabolome is analyzed by headspace solid-phase microextration combined with comprehensive two-dimensional gas chromatography and mass spectrometry. Dedicated pattern recognition, based on 2D data (targeted fingerprinting), is used to mine analytical outputs, while principal component analysis (PCA), Fisher ratio, hierarchical clustering, and analysis of variance are used to find decision makers among the most informative chemicals. Low-temperature drying (18-20 °C) has a decisive effect on quality; it correlates negatively with bacteria and mold metabolic activity, nut viability, and lipid oxidation products (2-methyl-1-propanol, 3-methyl-1-butanol, 2-ethyl-1-hexanol, 2-octanol, 1-octen-3-ol, hexanal, octanal and (E)-2-heptanal). Protective atmosphere storage (99% N2-1% O2) effectively limits lipid oxidation for 9-12 months after nut harvest. The combination of optimal drying and storage preserves the aroma potential; after roasting at different shelf-lives, key odorants responsible for malty and buttery (2- and 3-methylbutanal, 2,3-butanedione and 2,3-pentanedione), earthy (methylpyrazine, 2-ethyl-5-methyl pyrazine and 3-ethyl-2,5-dimethyl pyrazine) and caramel-like and musty notes (2,5-dimethyl-4-hydroxy-3(2H)-furanone - furaneol and acetyl pyrrole) show no significant variation. Graphical abstract Comprehensive two-dimensional gas chromatography (GC × GC) coupled with mass spectrometric detection captures hazelnut volatiles signatures while advanced fingerprinting approaches based on pattern recognition enable access to a higher level of information.


Assuntos
Corylus/química , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nozes/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Aldeídos/metabolismo , Corylus/metabolismo , Qualidade dos Alimentos , Furanos/análise , Furanos/metabolismo , Metaboloma , Nozes/metabolismo , Pirazinas/análise , Pirazinas/metabolismo , Compostos Orgânicos Voláteis/metabolismo
4.
Exp Dermatol ; 26(10): 919-925, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28370710

RESUMO

Volatile organic compounds emitted by human skin were sampled before and after acute barrier disruption of the volar forearm to investigate the significance of this approach to skin physiology research. A small wearable housing integrating a solid-phase micro-extraction fibre permitting rapid enclosed headspace sampling of human skin volatiles is presented, enabling non-invasive sample collection in 15 minutes, in a comfortable wearable format. Gas chromatography-mass spectrometry was utilised to separate and identify the volatile metabolites. A total of 37 compounds were identified, with aldehydes (hexanal, nonanal, decanal), acids (nonanoic, decanoic, dodecanoic, tetradecanoic and pentadecanoic acids) and hydrocarbons (squalane, squalene) predominant within the chemical profile. Acute barrier disruption was achieved through tape stripping (TS) of the stratum corneum to determine the impact on the volatile signature. Principle component analysis demonstrated there to be a discriminating volatile signature before and after TS. The dysregulation of significant features was examined. Several compounds derived from sebaceous components and their oxidation products were altered following barrier disruption, including squalane, squalene, octanal and nonanal. The upregulation of glycine was also observed, which may indicate a perturbation to the skin's natural moisturising factor production. TS impacted the hydro-lipid film that functions within the skin barrier, resulting in a differing volatile signature from affected skin. This provides a valuable non-invasive approach for scientific and clinical studies in dermatology, particularly around dermatological disorders associated with compromised barrier function.


Assuntos
Epiderme/química , Epiderme/fisiologia , Microextração em Fase Sólida/instrumentação , Compostos Orgânicos Voláteis/análise , Adulto , Epiderme/lesões , Feminino , Antebraço , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Análise de Componente Principal , Adulto Jovem
5.
J Exp Bot ; 65(15): 4097-117, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24821951

RESUMO

Extreme climatic events, including drought, are predicted to increase in intensity, frequency, and geographic extent as a consequence of global climate change. In general, to grow crops successfully in the future, growers will need to adapt to less available water and to take better advantage of the positive effects of drought. Fortunately, there are positive effects associated with drought. Drought stimulates the secondary metabolism, thereby potentially increasing plant defences and the concentrations of compounds involved in plant quality, particularly taste and health benefits. The role of drought on the production of secondary metabolites is of paramount importance for fruit crops. However, to manage crops effectively under conditions of limited water supply, for example by applying deficit irrigation, growers must consider not only the impact of drought on productivity but also on how plants manage the primary and secondary metabolisms. This question is obviously complex because during water deficit, trade-offs among productivity, defence, and quality depend upon the intensity, duration, and repetition of events of water deficit. The stage of plant development during the period of water deficit is also crucial, as are the effects of other stressors. In addition, growers must rely on relevant indicators of water status, i.e. parameters involved in the relevant metabolic processes, including those affecting quality. Although many reports on the effects of drought on plant function and crop productivity have been published, these issues have not been reviewed thus far. Here, we provide an up-to-date review of current knowledge of the effects of different forms of drought on fruit quality relative to the primary and secondary metabolisms and their interactions. We also review conventional and less conventional indicators of water status that could be used for monitoring purposes, such as volatile compounds. We focus on fruit crops owing to the importance of secondary metabolism in fruit quality and the importance of fruits in the human diet. The issue of defence is also briefly discussed.


Assuntos
Secas , Frutas/metabolismo , Compostos Fitoquímicos/metabolismo , Água/fisiologia
6.
Plant Physiol Biochem ; 196: 965-973, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36889235

RESUMO

Lilacs have high ornamental value due to their strong aroma. However, the molecular regulatory mechanisms of aroma biosynthesis and metabolism in lilac were largely unclear. In this study, two varieties with distinct aroma, Syringa oblata 'Zi Kui' (faint aroma) and Syringa vulgaris 'Li Fei' (strong aroma), were used for exploring the regulation mechanism of aroma difference. Via GC-MS analysis, a total of 43 volatile components were identified. Terpene volatiles was the most abundant volatiles constituting the aroma of two varieties. Notably, 3 volatile secondary metabolites were unique in 'Zi Kui' and 30 volatile secondary metabolites were unique in 'Li Fei'. Then, a transcriptome analysis was performed to clarify the regulation mechanism of aroma metabolism difference between these two varieties, and identified 6411 differentially expressed genes (DEGs). Interestingly, ubiquinone and other terpenoid-quinone biosynthesis genes were significantly enriched in DEGs. We further conducted a correlation analysis between the volatile metabolome and transcriptome and found that TPS, GGPPS, and HMGS genes might be the key contributors to the differences in floral fragrance composition between the two lilac varieties. Our study improves the understanding in the regulation mechanism of Lilac aroma and would help improve the aroma of ornamental crops by metabolic engineering.


Assuntos
Syringa , Syringa/genética , Syringa/metabolismo , Odorantes , Perfilação da Expressão Gênica , Metaboloma , Transcriptoma/genética , Terpenos/metabolismo
7.
Plants (Basel) ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679020

RESUMO

Prunus mume is a traditional Chinese plant with high ornamental and application values due to its very early blooming and unique fragrance. Long-term breeding and cultivation have resulted in a variety of P. mume blossoms and have made their exploitation more possible. Existing studies on the volatile metabolome and aroma of P. mume blossoms are limited. In this study, six extensively planted cultivars of P. mume blossoms, including Gulihong (GLH), Yudie (YD), LvE (LE), Dongfang Zhusha (DFZS), Jiangmei (JM), and Gongfen (GF), were investigated for their differences in terms of volatile metabolome, as well as their aroma characteristics based on the strategies and methods of metabolomics. The volatile metabolites were analyzed using HS-SPME-GC-MS technique. A total of eighty-nine compounds were detected and sixty-five of them were tentatively identified, including thirty-seven phenylpropanoids/benzenes, seventeen fatty acid derivatives, ten terpenoids, and one other compound. YD contains the most volatile metabolites in terms of number and amounts, which impart more abundant aromas to this cultivar. Fifteen differential compounds were screened through the untargeted metabolic analysis of twenty-nine samples by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), while nine compounds were screened based on the odor activity value (OAV) analysis of the sixty-five identified compounds. GLH and GF, JM and LE were found to be more similar to each other based on chemometrics analysis of both volatile contents and OAVs, while YD and DFZS were markedly different from other cultivars. Six main metabolites, including benzaldehyde, methyl benzoate, benzyl acetate, eugenol, (E)-cinnamic alcohol, and 4-allylphenol, together with 2-nonenal, 3,4-dimethoxytoluene, and trans-ß-Ionone were screened as differential compounds, owing to their higher contents and/or lower olfactory threshold, which endow an almond, cherry, phenolic, wintergreen, cananga odorata, floral, jasmine, hyacinth, cinnamon, clove, woody, medicinal, and violet fragrance to each variety, and greatly contribute to the aroma differences of six cultivars of P. mume blossom.

8.
Front Bioeng Biotechnol ; 11: 1193095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260830

RESUMO

Fermentation is extremely important for the formation of the special flavor of Wuyi rock tea. This study determined volatile metabolite contents using GC-MS technique and futher analyzed their odor characteristics during the traditional deep fermentation technology of Wuyi rock tea. The results showed that 17 characteristic compounds significantly changed during the first stage of the preliminary processing, namely fresh leaves, withering and fermentation. The key to the formation of floral aroma lied in dihydromyrcenol, and the woody aroma derived from six terpenoids, and their synthesis depended on dihydromyrcenol content. The fruity aroma was dominated by six esters, and the fruity aroma mainly came from (Z) -3-hexen-1-yl butyrate, (E) -3-hexen-1-yl butyrate and 5-Hexenyl butyrate. This study provided an important theoretical and practical basis for improving the preliminary processing of Wuyi rock tea.

9.
Food Res Int ; 173(Pt 2): 113383, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803722

RESUMO

The reduction of chemical inputs in wine has become one of the main challenges of the wine industry. One of the alternatives to sulfites developed is bioprotection, which consists in using non-Saccharomyces strains to prevent microbial deviation. However, the impact of substituting sulfites by bioprotection on the final wine remains poorly studied. For the first time, we characterized this impact on Chardonnay wine through an integrative approach. Interestingly, physico-chemical analysis did not reveal any difference between both treatments regarding classical oenological parameters. Nevertheless, bioprotection did not seem to provide as much protection against oxidation as sulfites, as observed through phenolic compound analysis. At a deeper level, untargeted metabolomic analyses revealed substantial changes in wine composition according to must treatment. In particular, the specific footprint of each treatment revealed an impact on nitrogen-containing compounds. This observation could be related to modifications in S. cerevisiae metabolism, in particular amino acid biosynthesis and tryptophan metabolism pathways. Thus, the type of must treatment seemed to impact metabolic fluxes of yeast differently, leading to the production of different compounds. For example, we observed glutathione and melatonin, compounds with antioxidant properties, which were enhanced with sulfites, but not with bioprotection. However, despite substantial modifications in wines regarding their chemical composition, the change in must treatment did not seem to impact the sensory profile of wine. This integrative approach has provided relevant new insights on the impact of sulfite substitution by bioprotection on Chardonnay wines.


Assuntos
Sulfitos , Vinho , Saccharomyces cerevisiae , Fermentação , Vinho/análise , Metabolômica
10.
EBioMedicine ; 80: 104051, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35561452

RESUMO

BACKGROUND: Current data suggest that dietary fibre (DF) interaction with the gut microbiota largely contributes to their physiological effects. The bacterial fermentation of DF leads to the production of metabolites, most of them are volatile. This study analyzed the breath volatile metabolites (BVM) profile in healthy individuals (n=15) prior and after a 3-week intervention with chitin-glucan (CG, 4.5 g/day), an insoluble fermentable DF. METHODS: The present exploratory study presents the original data related to the secondary outcomes, notably the analysis of BVM. BVM were analyzed throughout the test days -in fasting state and after standardized meals - using selected ion flow tube mass spectrometry (SIFT-MS). BVM production was correlated to the gut microbiota composition (Illumina sequencing, primary outcome), analyzed before and after the intervention. FINDINGS: The data reveal that the post-prandial state versus fasting state is a key determinant of BVM fingerprint. Correlation analyses with fecal microbiota spotlighted butyrate-producing bacteria, notably Faecalibacterium, as dominant bacteria involved in butyrate and other BVM expiration. CG intervention promotes interindividual variations of fasting BVM, and decreases or delays the expiration of most exhaled BVM in favor of H2 expiration, without any consequence on gastrointestinal tolerance. INTERPRETATION: Assessing BVM is a non-invasive methodology allowing to analyze the influence of DF intervention on the gut microbiota. FUNDING: FiberTAG project was initiated from a European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL) and was supported by the Service Public de Wallonie (SPW-EER, convention 1610365, Belgium).


Assuntos
Microbioma Gastrointestinal , Bactérias/metabolismo , Butiratos/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Voluntários Saudáveis , Humanos , Metaboloma
11.
Food Chem ; 385: 132701, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35320761

RESUMO

Japonica rice is widely planted in different regions of China. Rice of different geographical origins may have substantially different economic values. In this study, An untargeted metabolomics based approach using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS) was applied to distinguish 27 japonica rice varieties originated from South, Northern and Northeastern China in raw and cooked form, respectively. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models exhibited good geographic discrimination. Sixteen and twenty-two volatiles were selected as the discriminant markers in raw and cooked rice, respectively. However, only hexanal, 3,5-octadien-2-one and 2-butyl-2-octenal were selected both in raw and cooked rice. Markers in raw rice mainly involved in terpenes, lipoxygenases, indole, and shikimate and benzoic acid pathways. Markers in cooked rice were mainly derived from lipid oxidation. The results provided a deeper understanding of volatiles variation of rice in China from different geographic origins.


Assuntos
Oryza , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica , Oryza/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
12.
ACS Sens ; 4(5): 1442-1451, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31062956

RESUMO

Paper-based optoelectronic noses (OENs) are being developed based on printing of organic and organometallic reagents on hydrophilic substrates that can visualize the odor of volatiles. In this work, we report for the first time the use of nanoparticles for fabrication of novel paper-based OENs, which represent much higher sensitivity and produce simple but discriminant colorimetric signature of volatile metabolomes. This nano-optoelectronic nose (NOEN) system, which is fabricated by dropping of gold and silver nanoparticles (each synthesized by 8 chemical species) on the paper, gives obvious colorimetric signatures for chemicals having individual or combined functional groups. Owning to their ultrasensitivity, these simple devices need very small amounts of analytes. These devices could detect and discriminate 45 volatile organic compounds in 9 chemical families including phenols, alchohols, ketones, aldehydes, amines, acids, esters, arenes, and hydrocarbons. In addition to excellent discrimination ability, this NOEN sensor shows ultrahigh sensitivity such that could determine volatile compounds with detection limits around or lower than 10 ppb. Moreover, it can be combined with multivariate calibration methods for quantitative analysis of a metabolite in a complex mixture.


Assuntos
Nariz Eletrônico , Limite de Detecção , Nanotecnologia/instrumentação , Dispositivos Ópticos , Papel , Compostos Orgânicos Voláteis/análise , Colorimetria , Reconhecimento Automatizado de Padrão
13.
Environ Pollut ; 231(Pt 1): 802-811, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28865386

RESUMO

The volatile metabolome of Rhizobium sp. strain E20-8 exposed to three concentrations of cadmium (2.5, 5.0 and 7.5 µM) was screened using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-ToFMS), combined with headspace solid phase microextraction (HS-SPME). Cd exposure induced a global increase in the concentration of volatile organic compounds (VOCs) both intra and extracellularly. Peak areas of several linear alkanes, ketones, aldehydes, alcohols, terpenic and volatile sulfur compounds, and one ester (ethyl acetate), were especially increased when compared with the control condition (no Cd). These compounds might originate from the metabolization of toxic membrane peroxidation products, the proteolysis of oxidized proteins or the alteration of metabolic pathways, resulting from the oxidative stress imposed by Cd. Several VOCs are related to oxidative damage, but the production of VOCs involved in antioxidant response (menthol, α-pinene, dimethyl sulfide, disulfide and trisulfide, 1-butanol and 2-butanone) and in cell aggregation (2,3-butanedione, 3-methyl-1-butanol and 2-butanone) is also observed. These results bring new information that highlights the role of VOCs on bacteria response to Cd stress, identify a novel set of biomarkers related with metal stress and provide information to be applied in biotechnological and remediation contexts.


Assuntos
Cádmio/toxicidade , Substâncias Perigosas/toxicidade , Rhizobium/fisiologia , Testes de Toxicidade , Acetatos , Álcoois/análise , Aldeídos/análise , Alcanos/análise , Monoterpenos Bicíclicos , Butanonas , Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cetonas , Monoterpenos , Pentanóis , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA