RESUMO
Foliar fungal blast and bacterial leaf blight have significant impacts on rice production, and their management through host resistance and agrochemicals has proven inadequate. To achieve their sustainable management, innovative approaches like leveraging the foliar microbiome, which collaborates with plants and competes against pathogens, are essential. In our study, we isolated three Pantoea strains (P. agglomerans Os-Ep-PPA-1b, P. vagans Os-Ep-PPA-3b, and P. deleyi Os-Ep-VPA-9a) from the rice phylloplane. These isolates exhibited antimicrobial action through their metabolome and volatilome, while also promoting rice growth. Our analysis, using Gas Chromatography-Mass Spectrometry (GC-MS), revealed the presence of various antimicrobial compounds such as esters and fatty acids produced by these Pantoea isolates. Inoculating rice seedlings with P. agglomerans and P. vagans led to increased root and shoot growth. Additionally, bacterized seedlings displayed enhanced immunocompetence, as evidenced by upregulated expressions of defense genes (OsEDS1, OsFLS2, OsPDF2.2, OsACO4, OsICS OsPR1a, OsNPR1.3, OsPAD4, OsCERK1.1), along with heightened activities of defense enzymes like Polyphenol Oxidase and Peroxidase. These plants also exhibited elevated levels of total phenols. In field trials, the Pantoea isolates contributed to improved plant growth, exemplified by increased flag-leaf length, panicle number, and grains per panicle, while simultaneously reducing the incidence of chaffy grains. Hypersensitivity assays performed on a model plant, tobacco, confirmed the non-pathogenic nature of these Pantoea isolates. In summary, our study underscores the potential of Pantoea bacteria in combatting rice foliar diseases. Coupled with their remarkable growth-promoting and biostimulant capabilities, these findings position Pantoea as promising agents for enhancing rice cultivation.
Assuntos
Anti-Infecciosos , Oryza , Pantoea , Resiliência Psicológica , Xanthomonas , Pantoea/genética , Plantas , Xanthomonas/genética , Plântula/microbiologia , Anti-Infecciosos/metabolismo , Doenças das Plantas/microbiologiaRESUMO
BACKGROUND: Helicobacter pylori (H. pylori) infection is the most extensively studied risk factor for gastric cancer. As with any bacteria, H. pylori will release distinctive odors that result from an emission of volatile metabolic byproducts in unique combinations and proportions. Effectively capturing and identifying these volatiles can pave the way for the development of innovative and non-invasive diagnostic methods for determining infection. Here we characterize the H. pylori volatilomic signature, pinpoint potential biomarkers of its presence, and evaluate the variability of volatilomic signatures between different H. pylori isolates. MATERIALS AND METHODS: Using needle trap extraction, volatiles in the headspace above H. pylori cultures were collected and, following thermal desorption at 290°C in a splitless mode, were analyzed using gas chromatography-mass spectrometry. The resulting volatilomic signatures of H. pylori cultures were compared to those obtained from an analysis of the volatiles in the headspace above the cultivating medium only. RESULTS: Amongst the volatiles detected, 21 showed consistent differences between the bacteria cultures and the cultivation medium, with 11 compounds being elevated and 10 showing decreased levels in the culture's headspace. The 11 elevated volatiles are four ketones (2-pentanone, 5-methyl-3-heptanone, 2-heptanone, and 2-nonanone), three alcohols (2-methyl-1-propanol, 3-methyl-1-butanol, and 1 butanol), one aromatic (styrene), one aldehyde (2-ethyl-hexanal), one hydrocarbon (n-octane), and one sulfur compound (dimethyl disulfide). The 10 volatiles with lower levels in the headspace of the cultures are four aldehydes (2-methylpropanal, benzaldehyde, 3-methylbutanal, and butanal), two heterocyclic compounds (2-ethylfuran and 2-pentylfuran), one ketone (2-butanone), one aromatic (benzene), one alcohol (2-butanol) and bromodichloromethane. Of the volatile species showing increased levels, the highest emissions are found to be for 3-methyl-1-butanol, 1-butanol and dimethyl disulfide. Qualitative variations in their emissions from the different isolates was observed. CONCLUSIONS: The volatiles emitted by H. pylori provide a characteristic volatilome signature that has the potential of being developed as a tool for monitoring infections caused by this pathogen. Furthermore, using the volatilome signature, we are able to differentiate different isolates of H. pylori. However, the volatiles also represent potential confounders for the recognition of gastric cancer volatile markers.
Assuntos
Dissulfetos , Infecções por Helicobacter , Helicobacter pylori , Pentanóis , Neoplasias Gástricas , Humanos , ÁlcooisRESUMO
Fungi of the genus Ceratocystis are aggressive tree pathogens that cause serious diseases in several crops around the world. Ceratocystis wilt disease caused by C. cacaofunesta has been shown to be responsible for severe reductions in cacao production. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used in combination with chemometric analysis for monitoring volatile organic compounds (VOCs) released from C. cacaofunesta. Low-molecular-weight esters, alcohols, ketones, and sulphur compounds were identified in the liquid broth. Monitoring the volatile profile over five days of fungal growth revealed that the concentrations of alcohol and esters were inversely proportional. Acetate esters were responsible for the intense fruity aroma of the C. cacaofunesta culture produced within the first hours after fungal inoculation, which decreased over time, and are likely associated with the attraction of insect vectors to maintain the life cycle of the pathogen. PCA revealed that 3-methylbutyl acetate was the metabolite with the highest factor loading for the separation of the VOC samples after 4 h of fungal growth, whereas ethanol and 3-methylbutan-1-ol had the highest factor loadings after 96 and 120 h. 3-Methylbutan-1-ol is a phytotoxic compound that is likely associated with host cell death since C. cacaofunesta is a necrotrophic fungus. Fungal VOCs play important roles in natural habitats, regulating developmental processes and intra- and interkingdom interactions. This is the first report on the volatiles released by C. cacaofunesta.
RESUMO
The use of natural milk culture (NMC) represents a key factor in Protected Designation of Origin (PDO) Montasio cheese, contributing to its distinctive sensory profile. The complex microbial ecosystem of NMC is the result of heat treatment and incubation conditions, which can vary considerably among different production plants. In this study, the microbiota of NMC collected from 10 PDO Montasio cheese dairies was investigated by employing colony counts and metagenomic analysis. Furthermore, residual sugars, organic acids, and volatile profiles were quantitatively investigated. Results showed that Streptococcus thermophilus was the dominant species in all NMC, and a subdominant population made of other streptococci and Ligilactobacillus salivarius was also present. The incubation temperature appeared to be the main driver of biodiversity in NMC. Metagenomics allowed us to evidence the presence of minor species involving safety (e.g., Staphylococcus aureus) as well as possible functional aspects (Next Generation Probiotics). Statistical analysis based on residual sugars, organic acids, and volatiles' content allowed to correlate the presence of specific microbial groups with metabolites of great technological and sensory relevance, which can contribute to giving value to the artisanal production procedures of NMC and clarify their role in the creation of the characteristics of PDO Montasio cheese.
Assuntos
Biodiversidade , Queijo , Leite , Leite/microbiologia , Queijo/microbiologia , AnimaisRESUMO
The Capsicum genus includes several cultivated species that release complex blends of volatile organic compounds (VOCs) associated with their unique aroma. These VOCs are essential info-chemicals in ecological interactions. In this review, we describe how the volatilomic profiling naturally varies based on specific plant organs and genotypes as well as how non-beneficial organisms affect VOCs biosynthesis and accumulation in pepper plants. Also, we show evidence about VOCs variation under the pressure of different abiotic factors such as water stress, soil type and nutrient availability. The contribution of specific metabolic pathways and gene expression related to the biosynthesis of particular VOCs is addressed. We highlighted the utility of VOCs as chemical markers for quality control in the food industry, breeding programs to generate resistant plants and to improve aroma innovation. Herein we present a database containing 2734 VOCs, revealing 113 as the basic core of the volatilome from five Capsicum species.
RESUMO
The effects of normal (NA) and controlled atmosphere (CA) storage and postharvest treatment with 1-methylcyclopropene (1-MCP) before CA storage for 5 months on the volatilome, biochemical composition and quality of 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples were studied. Apples stored under NA and CA maintained and 1-MCP treatment increased firmness in both cultivars. NA storage resulted in a decrease of glucose, sucrose and fructose levels in both cultivars. When compared to CA storage, 1-MCP treatment caused a more significant decrease in sucrose levels and an increase in glucose levels. Additionally, 1-MCP-treated apples exhibited a significant decrease in malic acid content for both cultivars. All storage conditions led to significant changes in the abundance and composition of the volatilome in both cultivars. GD and RD apples responded differently to 1-MCP treatment compared to CA storage; higher abundance of hexanoate esters and (E,E)-α-farnesene was observed in RD apples treated with 1-MCP. While 1-MCP was effective in reducing (E,E)-α-farnesene abundance in GD apples, its impact on RD apples was more limited. However, for both cultivars, all storage conditions resulted in lower levels of 2-methylbutyl acetate, butyl acetate and hexyl acetate. The effectiveness of 1-MCP is cultivar dependent, with GD showing better results than RD.
Assuntos
Armazenamento de Alimentos , Malus , Malus/química , Malus/metabolismo , Ciclopropanos/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Frutas/química , Frutas/metabolismo , Sacarose/metabolismo , Malatos , Sesquiterpenos/análise , Glucose/metabolismo , Frutose/metabolismo , Frutose/análiseRESUMO
Floral senescence is of fundamental interest in understanding plant developmental regulation, it is of ecological and agricultural interest in relation to seed production, and is of key importance to the production of cut flowers. The biochemical changes occurring are well-studied and involve macromolecular breakdown and remobilisation of nutrients to developing seeds or other young organs in the plant. However, the initiation and regulation of the process and inter-organ communication remain to be fully elucidated. Although ethylene emission, which becomes autocatalytic, is a key regulator in some species, in other species it appears not to be as important. Other plant growth regulators such as cytokinins, however, seem to be important in floral senescence across both ethylene sensitive and insensitive species. Other plant growth regulators are also likely involved. Omics approaches have provided a wealth of data especially in ornamental species where genome data is lacking. Two families of transcription factors: NAC and WRKY emerge as major regulators, and omics information has been critical in understanding their functions. Future progress would greatly benefit from a single model species for understanding floral senescence; however, this is challenging due to the diversity of regulatory mechanisms. Combining omics data sets can be powerful in understanding different layers of regulation, but in vitro biochemical and or genetic analysis through transgenics or mutants is still needed to fully verify mechanisms and interactions between regulators.
Assuntos
Etilenos , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo , Flores/genética , Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
INTRODUCTION: Biogenic volatile organic compounds (BVOCs) are emitted by all organisms as intermediate or end-products of metabolic processes. Individual BVOCs perform important physiological, ecological and climatic functions, and collectively constitute the volatilome-which can be reflective of organism taxonomy and health. Although BVOC emissions of tropical benthic reef taxa have recently been the focus of multiple studies, emissions derived from their temperate counterparts have never been characterised. OBJECTIVES: Characterise the volatilomes of key competitors for benthic space among Australian temperate reefs. METHODS: Six fragments/fronds of a temperate coral (Plesiastrea versipora) and a macroalga (Ecklonia radiata) from a Sydney reef site were placed within modified incubation chambers filled with seawater. Organism-produced BVOCs were captured on thermal desorption tubes using a purge-and-trap methodology, and were then analysed using GC × GC - TOFMS and multivariate tests. RESULTS: Analysis detected 55 and 63 BVOCs from P. versipora and E. radiata respectively, with 30 of these common between species. Each taxon was characterised by a similar relative composition of chemical classes within their volatilomes. However, 14 and 10 volatiles were distinctly emitted by either E. radiata or P. versipora respectively, including the halogenated compounds iodomethane, tribromomethane, carbon tetrachloride and trichloromonofluoromethane. While macroalgal cover was 3.7 times greater than coral cover at the sampling site, P. versipora produced on average 17 times more BVOCs per cm2 of live tissue, resulting in an estimated contribution to local BVOC emission that was 4.7 times higher than E. radiata. CONCLUSION: Shifts in benthic community composition could disproportionately impact local marine chemistry and affect how ecosystems contribute to broader BVOC emissions.
Assuntos
Antozoários , Compostos Orgânicos Voláteis , Animais , Ecossistema , Compostos Orgânicos Voláteis/análise , Austrália , Metabolômica , Antozoários/metabolismoRESUMO
The aim of this study was to track changes in the volatilome of cold-pressed oil and press cakes obtained from roasted seeds and to combine it with the profile of non-volatile metabolites in a single study, in order to understand pathways of volatile organic compound (VOC) formation caused by thermal processing. Comprehensive two-dimensional gas chromatography-time of flight mass spectrometry was used for the analysis of VOCs in cold-pressed oils and corresponding press cakes obtained after roasting of seeds at 140 and 180 °C prior to pressing. Contents of primary metabolites (amino acids, saccharides, fatty acids) as well as selected secondary metabolites (glucosinolates, polyphenols) were determined, as many of them serve as precursors to volatile compounds formed especially in thermal reactions. After roasting, the formation of Maillard reaction products increased, which corresponded to the reduction of free amino acids and monosaccharides. Moreover, levels of the products of thermal oxidation of fatty acids, such as aldehydes and ketones, increased with the increasing temperature of roasting, although no significant changes were noted for fatty acids. Among sulphur-containing compounds, contents of the products and intermediates of methionine Strecker degradation increased significantly with the increasing temperature of roasting. Degradation of glucosinolates to nitriles occurred after thermal treatment. The results of this study confirmed that seed roasting before cold pressing has a significant effect on the volatiles, but also indicated roasting-induced changes in non-volatile metabolites of oil and press cake. Such an approach helps to understand metabolic changes occurring during rapeseed processing in cold-pressed oil production.
Assuntos
Glucosinolatos , Sementes , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Glucosinolatos/análise , Óleos de Plantas/química , Óleo de Brassica napus , Sementes/química , Temperatura BaixaRESUMO
Microbial metabolomics allows understanding and to comprehensively analyse metabolites, and their related cellular and metabolic processes, that are produced and released to the extracellular environment under specific conditions. In that regard, the main objective of this research is to understand the impact of culture media changes in the metabolic profile of Pedobacter lusitanus NL19 (NL19) and Pedobacter himalayensis MTCC 6384 (MTCC6384) and respective influence on the production of biotechnologically relevant compounds. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry with time-of-flight analyser (GC × GC-ToFMS) was applied to comprehensively study the metabolites produced by NL19 and MTCC6384 both in tryptic soy broth 100% (TSB100) and tryptic soy broth with 25% casein peptone (PC25). A total of 320 metabolites were putatively identified, which belong to different chemical families: alcohols, aldehydes, esters, ethers, hydrocarbons, ketones, nitrogen compounds, sulphur compounds, monoterpenes, and sesquiterpenes. Metabolites that were statistically different from the control (sterile medium) were selected allowing for the construction of the metabolic profile of both strains. A set of 80 metabolites was tentatively associated to the metabolic pathways such as the metabolism of fatty acids, branched-chain aminoacids, phenylalanine, methionine, aromatic compounds, and monoterpene and sesquiterpene biosynthesis. This study allowed to better understand how slight changes of the culture media and thus the composition of nutrients impair the metabolic profile of bacteria, which may be further explored for metabolomics pipeline construction or biotechnological applications.
Assuntos
Aldeídos , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Monoterpenos , Meios de Cultura , Compostos Orgânicos Voláteis/química , Microextração em Fase Sólida/métodosRESUMO
Microbial community and volatilome of brines were monitored during the spontaneous fermentations of Spanish-style and Natural-style green table olives from Manzanilla cultivar. Fermentation of olives in the Spanish style was carried out by lactic acid bacteria (LAB) and yeasts, whereas halophilic Gram-negative bacteria and archaea, along with yeasts, drove the fermentation in the Natural style. Clear differences between the two olive fermentations regarding physicochemical and biochemical features were found. Lactobacillus, Pichia, and Saccharomyces were the dominant microbial communities in the Spanish style, whereas Allidiomarina, Halomonas, Saccharomyces, Pichia, and Nakazawaea predominated in the Natural style. Numerous qualitative and quantitative differences in individual volatiles between both fermentations were found. The final products mainly differed in total amounts of volatile acids and carbonyl compounds. In addition, in each olive style, strong positive correlations were found between the dominant microbial communities and various volatile compounds, some of them previously reported as aroma-active compounds in table olives. The findings from this study provide a better understanding of each fermentation process and may help the development of controlled fermentations using starter cultures of bacteria and/or yeasts for the production of high-quality green table olives from Manzanilla cultivar.
Assuntos
Microbiota , Olea , Fermentação , Olea/microbiologia , Microbiologia de Alimentos , LevedurasRESUMO
Leuconostoc spp. is often regarded as the flavor producer, responsible for the production of acetoin and diacetyl in dairy cheese. In this study, we investigate seven plant-derived Leuconostoc strains, covering four species, in their potential as a lyophilized starter culture for flavor production in fermented soy-based cheese alternatives. We show that the process of lyophilization of Leuconostoc can be feasible using a soy-based lyoprotectant, with survivability up to 63% during long term storage. Furthermore, the storage in this media improves the subsequent growth in a soy-based substrate in a strain specific manner. The utilization of individual raffinose family oligosaccharides was strain dependent, with Leuconostoc pseudomesenteroides NFICC99 being the best consumer. Furthermore, we show that all investigated strains were able to produce a range of volatile flavor compounds found in dairy cheese products, as well as remove certain dairy off-flavors from the soy-based substrate like hexanal and 2-pentylfuran. Also here, NFICC99 was strain producing most cheese-related volatile flavor compounds, followed by Leuconostoc mesenteroides NFICC319. These findings provide initial insights into the development of Leuconostoc as a potential starter culture for plant-based dairy alternatives, as well as a promising approach for generation of stable, lyophilized cultures.
Assuntos
Laticínios , Leuconostoc , Fermentação , Leuconostoc/metabolismo , Concentração de Íons de Hidrogênio , Açúcares/metabolismoRESUMO
The possible contribution of brine-derived microflora to the sensory attributes of cheese is still a rather unexplored field. In this study, 365 bacteria and 105 yeast strains isolated from 11 cheese brines were qualitatively tested for proteolytic and lipolytic activities, and positive strains were identified by sequencing. Among bacteria, Staphylococcus equorum was the most frequent, followed by Macrococcus caseolyticus and Corynebacterium flavescens. As for yeasts, Debaryomyces hansenii, Clavispora lusitaniae, and Torulaspora delbrueckii were most frequently identified. A total of 38% of bacteria and 59% of yeasts showed at least 1 of the metabolic activities tested, with lipolytic activity being the most widespread (81% of bacteria and 95% of yeasts). Subsequently 15 strains of bacteria and 10 yeasts were inoculated in a curd-based medium and assessed via headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry to determine their volatilome. After a 30-d incubation at 12°C, most strains showed a viability increase of about 2 log cfu/mL, suggesting good adaptability to the cheese environment. A total of 26 compounds were detected in the headspace, carbonyl compounds and alcohols being the major contributors to the volatile profile of the curd-based medium. Multivariate analysis was carried out to elucidate the overall differences in volatiles produced by selected strains. Principal component analysis and hierarchical clustering analysis demonstrated that the brine-related microorganisms were separated into 3 different groups, suggesting their different abilities to produce volatile compounds. Some of the selected strains have been shown to have interesting aromatic potential and to possibly contribute to the sensory properties of cheese.
Assuntos
Queijo , Sais , Animais , Sais/metabolismo , Leveduras , Bactérias/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Queijo/análiseRESUMO
Legionellosis is a generic term describing the pneumonic (Legionnaires' disease, LD) and non-pneumonic (Pontiac fever, PF) forms of infection with bacteria belonging to the genus Legionella. Currently, the techniques used to detect Legionella spp. in water samples have certain limitations and drawbacks, and thus, there is a need to identify new tools to carry out low-cost and rapid analysis. In this regard, several studies demonstrated that a volatolomics approach rapidly detects and discriminates different species of microorganisms via their volatile signature. In this paper, the volatile organic compounds (VOCs) pattern emitted in vitro by Legionella pneumophila cultures is characterized and compared to those produced by other Legionella species and by Pseudomonas aeruginosa, using a gas sensor array and gas chromatograph mass spectrometer (GC-MS). Bacterial cultures were measured at the 3rd and 7th day after the incubation. Sensor array data analyzed via the K-nearest neighbours (k-NN) algorithm showed a sensitivity to Legionella pneumophila identification at around 89%. On the other hand, GC-MS identified a bouquet of VOCs, mainly alcohols and ketones, that enable the differentiation of Legionella pneumophila in respect to other waterborne microorganisms.
Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Projetos Piloto , Cromatografia Gasosa-Espectrometria de Massas , Doença dos Legionários/diagnóstico , Doença dos Legionários/microbiologiaRESUMO
In the frame of efforts to add value to the Mediterranean currant cultivation and processing sectors, which is essential for their sustainability, sweet wine production is proposed from the finishing side-stream (FSS) of premium quality Corinthian currants, involving complete fermentation using an alcohol-tolerant yeast followed by (i) the addition of FSS to extract sugars or (ii) syrup made from FSS to adjust sweetness. Wine was also made by (iii) ceasing fermentation at the desired sugar level by ethanol addition. The non-fortified wines had 15.2-15.5% ethanol, 115-145 g/L residual sugar, 7.2-7.6 g/L titratable acidity, low volatile acidity (VA; <0.33 g/L), 280-330 mg/L phenolic content (TPC) (as gallic acid), and 23.8-35.6 mg/L antioxidant capacity (AC) (as ascorbic acid). In total, 160 volatiles were identified by SPME GC-MS, including compounds derived from the grapes, the raisin drying, and the fermentation process. The non-fortified wines had better characteristics (mainly VA, AC, and TPC) than the fortified wine, while sweetness adjustment by FSS is the simplest and lowest cost method since it does not involve ethanol or syrup addition. The proposed methods can lead to good quality sweet wines with a characteristic fruity (grape/raisin) flavor that could be commercialized as specialty raisin beverages or liqueurs.
Assuntos
Ribes , Vitis , Vinho , Vinho/análise , Antioxidantes , Carboidratos/análise , Açúcares , Etanol , Saccharomyces cerevisiae , FermentaçãoRESUMO
Chemically diverse in compounds, urine can give us an insight into metabolic breakdown products from foods, drinks, drugs, environmental contaminants, endogenous waste metabolites, and bacterial by-products. Hundreds of them are volatile compounds; however, their composition has never been provided in detail, nor has the methodology used for urine volatilome untargeted analysis. Here, we summarize key elements for the untargeted analysis of urine volatilome from a comprehensive compilation of literature, including the latest reports published. Current achievements and limitations on each process step are discussed and compared. 34 studies were found retrieving all information from the urine treatment to the final results obtained. In this report, we provide the first specific urine volatilome database, consisting of 841 compounds from 80 different chemical classes.
RESUMO
MAIN CONCLUSIONS: C. campestris parasitisation increases internal host defences at the expense of environmentally directed ones in the host species A. campestris, thus limiting plant defence against progressive parasitisation. Cuscuta campestris Yunck is a holoparasitic species that parasitises wild species and crops. Among their hosts, Artemisia campestris subsp. variabilis (Ten.) Greuter is significantly affected in natural ecosystems. Limited information is available on the host recognition mechanism and there are no data on the interactions between these species and the effects on the primary and specialised metabolism in response to parasitisation. The research aims at evaluating the effect of host-parasite interactions, through a GC-MS untargeted metabolomic analysis, chlorophyll a fluorescence, ionomic and δ13C measurements, as well as volatile organic compound (VOC) fingerprint in A. campestris leaves collected in natural environment. C. campestris parasitisation altered plant water status, forcing stomatal opening, stimulating plant transpiration, and inducing physical damages to the host antenna complex, thus reducing the efficiency of its photosynthetic machinery. Untargeted-metabolomics analysis highlighted that the parasitisation significantly perturbed the amino acids and sugar metabolism, inducing an increase in the production of osmoprotectants, which generally accumulate in plants as a protective strategy against oxidative stress. Notably, VOCs analysis highlighted a reduction in sesquiterpenoids and an increase in monoterpenoids levels; involved in plant defence and host recognition, respectively. Moreover, C. campestris induced in the host a reduction in 3-hexenyl-acetate, a metabolite with known repellent activity against Cuscuta spp. We offer evidences that C. campestris parasitisation increases internal host defences via primary metabolites at the expense of more effective defensive compounds (secondary metabolites), thus limiting A. campestris defence against progressive parasitisation.
Assuntos
Artemisia , Cuscuta , Cuscuta/metabolismo , Ecossistema , Clorofila A/metabolismo , FotossínteseRESUMO
The first weeks of life represent a crucial stage for microbial colonization of the piglets' gastrointestinal tract. Newborns' microbiota is unstable and easily subject to changes under stimuli or insults. Nonetheless, the administration of antibiotics to the sow is still considered as common practice in intensive farming for pathological conditions in the postpartum. Therefore, transfer of antibiotic residues through milk may occurs, affecting the piglets' colon microbiota. In this study, we aimed to extend the knowledge on antibiotic transfer through milk, employing an in vitro dedicated piglet colon model (MICODE-Multi Unit In vitro Colon Model). The authors' focus was set on the shifts of the piglets' microbiota composition microbiomics (16S r-DNA MiSeq and qPCR-quantitative polymerase chain reaction) and on the production of microbial metabolites (SPME GC/MS-solid phase micro-extraction gas chromatography/mass spectrometry) in response to milk with different concentrations of amoxicillin. The results showed an effective influence of amoxicillin in piglets' microbiota and metabolites production; however, without altering the overall biodiversity. The scenario is that of a limitation of pathogens and opportunistic taxa, e.g., Staphylococcaceae and Enterobacteriaceae, but also a limitation of commensal dominant Lactobacillaceae, a reduction in commensal Ruminococcaceae and a depletion in beneficial Bifidobactericeae. Lastly, an incremental growth of resistant species, such as Enterococcaceae or Clostridiaceae, was observed. To the authors' knowledge, this study is the first evaluating the impact of antibiotic residues towards the piglets' colon microbiota in an in vitro model, opening the way to include such approach in a pipeline of experiments where a reduced number of animals for testing is employed. KEY POINTS: ⢠Piglet colon model to study antibiotic transfer through milk. ⢠MICODE resulted a robust and versatile in vitro gut model. ⢠Towards the "3Rs" Principles to replace, reduce and refine the use of animals used for scientific purposes (Directive 2010/63/UE).
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Suínos , Feminino , Amoxicilina/farmacologia , Colo , Metabolômica , Antibacterianos/farmacologiaRESUMO
Researchers looking for biomarkers from different sources, such as breath, urine, or blood, frequently search for specific patterns of volatile organic compounds (VOCs), often using pattern recognition or machine learning techniques. However, they are not generally aware that these patterns change depending on the source they use. Therefore, we have created a simple model to demonstrate that the distribution patterns of VOCs in fat, mixed venous blood, alveolar air, and end-tidal breath are different. Our approach follows well-established models for the description of dynamic real-time breath concentration profiles. We start with a uniform distribution of end-tidal concentrations of selected VOCs and calculate the corresponding target concentrations. For this, we only need partition coefficients, mass balance, and the assumption of an equilibrium state, which avoids the need to know the volatiles' metabolic rates and production rates within the different compartments.
Assuntos
Líquidos Corporais , Compostos Orgânicos Voláteis , Biomarcadores , Líquidos Corporais/química , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análiseRESUMO
The odor of human milk induces search-like movements and oral activation in newborns, which increases their chances of taking advantage of milk intake and benefits. However, the underlying volatile fraction of human milk remains understudied. This study aimed to devise a simple method to extract a wide range of volatile compounds from small-volume human milk samples. Headspace solid phase micro-extraction (HS-SPME) with a Car/PDMS fiber and dynamic headspace extraction (D-HS) with a Tenax or a trilayer sorbent were tested because of their selective affinity for volatiles. Then, innovative variations of these methods were developed to combine their respective advantages in a one-step extraction: Static headspace with multiple SPME fibers (S-HS-MultiSPME), Dynamic headspace with multiple SPME fibers (D-HS-MultiSPME) and dynamic headspace with multiple SPME fibers and Tenax (D-HS-MultiSPME/Tenax). The extracts were analyzed by gas chromatography coupled with mass spectrometric and flame ionization detection. The relative performances of these methods were compared based on qualitative and semi-quantitative analyses of the chromatograms. The D-HS technique showed good sensitivity for most compounds, whereas HS-SPME favored the extraction of acids. The D-HS-MultiSPME/Tenax identified more than 60 compounds from human milk (some for the first time) and evidence of individual singularities. This method that can be applied to volatilome analysis of any biological fluid should further our understanding of human milk odor.