Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(5): 2423-2433, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270134

RESUMO

Isotopic source apportionment results revealed that nonagricultural sectors are significant sources of ammonia (NH3) emissions, particularly in urban areas. Unfortunately, nonagricultural sources have been substantially underrepresented in the current anthropogenic NH3 emission inventories (EIs). Here, we propose a novel approach to develop a gridded EI of nonagricultural NH3 in China for 2016 using a combination of isotopic source apportionment results and the emission ratios of carbon monoxide (CO) and NH3. We estimated that isotope-corrected nonagricultural NH3 emissions were 4370 Gg in China in 2016, accounting for an increase in the total NH3 emissions from 7 to 31%. As a result, compared to the original NH3 EI, the annual emissions of total NH3 increased by 35%. Thus, in comparison to the simulation driven by the original NH3 EI, the WRF-Chem model driven by the isotope-corrected NH3 EI has reduced the model biases in the surface concentrations and dry deposition flux of reduced nitrogen (NHx = gaseous NH3 + particulate NH4+) by 23 and 31%, respectively. This study may have wide-ranging implications for formulating targeted strategies for nonagricultural NH3 emissions controls, making it facilitate the achievement of simultaneously alleviating nitrogen deposition and atmospheric pollution in the future.


Assuntos
Poluentes Atmosféricos , Amônia , Amônia/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China , Nitrogênio/análise , Isótopos
2.
Environ Sci Technol ; 58(12): 5430-5441, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471097

RESUMO

The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 µg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 µg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Temperatura , Monitoramento Ambiental/métodos , China
3.
Int J Biometeorol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809299

RESUMO

Rapid urbanization increases urban air temperature, considerably affecting health, comfort, and the quality of life in urban spaces. The accurate assessment of outdoor thermal comfort is crucial for urban health. In the present study, a high-resolution mesoscale model coupled with a layer Urban Canopy Model (WRF-UCM) is implemented over the city of Hyderabad (17.3850° N, 78.4867° E) to simulate urban meteorological conditions during the summer and winter period of 2009 and 2019. The universal thermal climate index (UTCI) has been estimated using the model-derived atmospheric variables and a human biometeorology parameter to assess the linkages between the outdoor environment and thermal comfort. Results revealed that during summer, the city experiences nearly 50 h of very strong thermal stress, whereas about 120 h of slight cold stress are experienced during winter. The urban area in Hyderabad expanded from 5 to 15% during the study period, leading to a 2.5℃ (2.8 ℃) increase in land surface temperature, and a 1.2 (1.9 ℃) rise in air temperature at 2 m height and 1.5 (2.5 ℃) UTCI during summer (winter) time. The analysis reveals that the maximum UTCI values were noticed over built-up areas compared to other land classes during daytime and nighttime. The results derived from the present study have shown that the performance of WRF-UCM-derived UTCI reasonably portrayed the significant impact of urbanization on thermal comfort over the city and provided useful insights with regard to urban comfort and welfare.

4.
Int J Biometeorol ; 68(5): 811-828, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360928

RESUMO

Megacities, such as Lagos, Nigeria, face significant challenges due to rapid urbanization and climate change, resulting in a higher intensity of the urban heat island effect, coupled with high population density, making the city fall under the category of moderate to high heat stress/risk. Despite this, very few studies have analyzed the urban impact on heat stress over the coastal city, albeit with poor resolution data. In this study, we assessed the performance of an integrated high-resolution WRF-urban scheme driven by the readily available urban canopy information of the local climate zone (LCZ) to simulate local meteorological data for analyzing the spatiotemporal pattern of heat stress over the megacity. Our results show that the WRF-BEP scheme outperformed the other evaluated urban schemes, reducing the normalized root mean squared error by 25%. Furthermore, using humidex, we found a generally high incidence of intense discomfort in highly urbanized areas and noted the significant influence of urban morphology on the pattern of heat stress, particularly at night due to the combined effect of urban warming and higher relative humidity. The most socioeconomically disadvantaged urban areas, LCZ7, were most affected, with "hot" heat stress conditions observed over 90% of the time. However, during the afternoon, we found reduced heat stress in the core urban areas which might be due to the shading effect and/or cold air advection. Our findings would be relevant in the development of the urgently needed climate/heat adaptation plans for the city and other sub-Saharan African cities.


Assuntos
Cidades , Transtornos de Estresse por Calor , Nigéria , Humanos , Transtornos de Estresse por Calor/epidemiologia , Modelos Teóricos , Mudança Climática , Temperatura Alta
5.
J Environ Manage ; 368: 122185, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39151337

RESUMO

Land use and land cover change (LUCC) can alter surface properties, such as albedo, roughness, and vegetation coverage, directly affecting dust emissions and aerosol concentrations, leading to variations in direct radiative forcing (DRF) of dust aerosols and consequently impacting the climate. This study utilized the Weather Research and Forecasting model with Chemistry (WRF-Chem) to quantify the impact of LUCC in northern China from 2000 to 2020 on dust aerosol DRF. Results indicated that LUCC's influence on shortwave radiative forcing of dust was significantly greater than its influence on longwave radiative forcing and exhibited obvious seasonal variations. Overall, LUCC can cause net direct radiative forcing to increase by 5.3 W m-2 at the surface and decrease by 7.8 W m-2 in the atmosphere. Different types of LUCC transformation showed distinct impacts on dust aerosol DRF, with the conversion from sparse vegetation to barren land had the most significant effect on net radiative intensity, resulting in a decrease of 8.1 W m-2 at the surface, an increase of 12.2 W m-2 in the atmosphere, and an increase of 4.1 W m-2 at the top of the atmosphere. Conversely, the conversion from barren land to sparse vegetation led to surface cooling and atmospheric warming. These findings are of great significance for enhancing our knowledge of the effects of LUCC on the radiative balance of dust aerosols.


Assuntos
Aerossóis , Poeira , Aerossóis/análise , China , Poeira/análise , Atmosfera , Monitoramento Ambiental
6.
J Environ Sci (China) ; 138: 249-265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135393

RESUMO

Previous air pollution control strategies didn't pay enough attention to regional collaboration and the spatial response sensitivities, resulting in limited control effects in China. This study proposed an effective PM2.5 and O3 control strategy scheme with the integration of Self-Organizing Map (SOM), Genetic Algorithm (GA) and WRF-CAMx, emphasizing regional collaborative control and the strengthening of control in sensitive areas. This scheme embodies the idea of hierarchical management and spatial-temporally differentiated management, with SOM identifying the collaborative subregions, GA providing the optimized subregion-level priority of precursor emission reductions, and WRF-CAMx providing response sensitivities for grid-level priority of precursor emission reductions. With Beijing-Tianjin-Hebei and the surrounding area (BTHSA, "2 + 26" cities) as the case study area, the optimized strategy required that regions along Taihang Mountains strengthen the emission reductions of all precursors in PM2.5-dominant seasons, and strengthen VOCs reductions but moderate NOx reductions in O3-dominant season. The spatiotemporally differentiated control strategy, without additional emission reduction burdens than the 14th Five-Year Plan proposed, reduced the average annual PM2.5 and MDA8 O3 concentrations in 28 cities by 3.2%-8.2% and 3.9%-9.7% respectively in comparison with non-differential control strategies, with the most prominent optimization effects occurring in the heavily polluted seasons (6.9%-18.0% for PM2.5 and 3.3%-14.2% for MDA8 O3, respectively). This study proposed an effective scheme for the collaborative control of PM2.5 and O3 in BTHSA, and shows important methodological implications for other regions suffering from similar air quality problems.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China , Algoritmos
7.
Environ Sci Technol ; 57(6): 2310-2321, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36730212

RESUMO

Health and livelihood impacts from ambient air pollution among populations in developing countries are disproportional. These disparities are often overlooked due to a lack of information on microlevel emission data, especially in smaller cities and rural areas. The current work in an Indian district, Saharanpur, proposes the use of novel data sets to estimate microlevel emissions from air-polluting infrastructure sectors in urban and rural areas for use in pollutant transport models. Health impacts estimated based on the surface PM2.5 concentration suggest that the rate of premature deaths is 158 (95% CI: 122-163) and 143 (95% CI: 65-151) deaths per 100 000 people in urban and rural areas, respectively. Sixty-eight percent of the 6372 (95% CI: 3321-6987) annual premature deaths occurs in rural areas. Depicting higher contribution-exposure disparities among socioeconomic groups, the study observed that compared to their contribution to air pollution, low socioeconomic status (SES) groups in the region experience 6,7, 7, and 26% more premature deaths from PM2.5 exposure for industries, household cooking fuel burning, open waste burning, and transportation, respectively. The majority of disability-adjusted life years (DALYs) in the study domain are observed in economically weaker worker categories. Reduced income due to the loss of these life years will significantly impact these groups due to their dependence on daily wages for basic life necessities. Microlevel pollution mitigation policies with a focus on these inequalities are critical for promoting environmental equity and justice.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , Cidades , Mortalidade Prematura
8.
Environ Sci Technol ; 57(7): 2715-2725, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36722840

RESUMO

Particulate nitrate (NO3-) has currently become the major component of fine particles in the North China Plain (NCP) during winter haze episodes. However, the contributions of formation pathways to ground NO3- in the NCP are not fully understood. Herein, the NO3- formation pathways were comprehensively investigated based on model simulations combined with two-month field measurements at a rural site in the winter NCP. The results indicated that the nocturnal chemistry of N2O5 hydrolysis aloft could contribute evidently to ground NO3- at the rural site during the pollution episodes with high aerosol water contents, achieving the contribution percentages of 25.2-30.4% of the total. In addition to the commonly proposed vertical mixing of breaking nocturnal boundary layer in the early morning, two additional transport pathways (frontal downdrafts and downslope mountain breezes) in the nighttime were found to make higher contributions to ground NO3-. Considering the dominant role (69.6-74.8%) of diurnal chemistry in NO3- formation, reduction of NOx emissions in the daytime may be an effective control measure for reducing regional NO3- in the NCP.


Assuntos
Poluentes Atmosféricos , Nitratos , Nitratos/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrólise , Monitoramento Ambiental , China , Estações do Ano
9.
Proc Natl Acad Sci U S A ; 117(52): 33005-33010, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33323486

RESUMO

Anthropogenic combustion-derived water (CDW) may accumulate in an airshed due to stagnant air, which may further enhance the formation of secondary aerosols and worsen air quality. Here we collected three-winter-season, hourly resolution, water-vapor stable H and O isotope compositions together with atmospheric physical and chemical data from the city of Xi'an, located in the Guanzhong Basin (GZB) in northwestern China, to elucidate the role of CDW in particulate pollution. Based on our experimentally determined water vapor isotope composition of the CDW for individual and weighted fuels in the basin, we found that CDW constitutes 6.2% of the atmospheric moisture on average and its fraction is positively correlated with [PM2.5] (concentration of particulate matter with an aerodynamic diameter less than 2.5 µm) as well as relative humidity during the periods of rising [PM2.5]. Our modeling results showed that CDW added additional average 4.6 µg m-3 PM2.5 during severely polluted conditions in the GZB, which corresponded to an average 5.1% of local anthropogenic [PM2.5] (average at ∼91.0 µg m-3). Our result is consistent with the proposed positive feedback between the relative humidity and a moisture sensitive air-pollution condition, alerting to the nontrivial role of CDW when considering change of energy structure such as a massive coal-to-gas switch in household heating in winter.

10.
Atmos Res ; 288: 106732, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37007932

RESUMO

Among the many impacts of COVID-19, the pandemic led to improved air quality conditions in the countries under quarantine due to the shutdown of industries, drastically reduced traffic, and lockdowns. Meanwhile, the western United States, particularly the coastal areas from Washington to California, received much less precipitation than normal during early 2020. Is it possible that this reduction in precipitation was driven by the reduced aerosols due to the coronavirus? Here we show that the reduction in aerosols resulted in higher temperatures (up to ∼0.5 °C) and generally lower snow amounts but cannot explain the observed low precipitation amounts over this region. In addition to an assessment of the effects of the coronavirus-related reduction in aerosols on precipitation across the western United States, our findings also provide basic information on the potential impacts different mitigation efforts aimed at reducing anthropogenic aerosols would have on the regional climate.

11.
Environ Monit Assess ; 195(7): 889, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365432

RESUMO

Mining is one of the principal economic activities in Mexico, which in addition to bringing benefits to the population, causes health and environmental problems. This activity produces a lot of wastes, but the main one is tailings. In Mexico, these wastes are disposed of in the open air, and there is no control over them, so the particles of these wastes are dispersed by wind currents to the surrounding population. In this research, tailings were characterized, finding in them particles smaller than 100 microns; in this way, tailings can enter into the respiratory system and hence can cause diseases. Furthermore, it is important to identify the toxic components. The present work does not have previous research in Mexico, and it shows a qualitative characterization of the tailings from an active mine using different analytical techniques. In addition to the data obtained from the characterization of the tailings, as well as the concentration of the toxic elements found, which were Pb and As, a dispersal model was generated and used to estimate the concentration of particles in the wind generated at the studied area. The air quality model used in this research is AERMOD, where it uses emission factors and available databases provided by Environmental Protection Agency (USEPA); Moreover, the model was coupled with meteorological information from the latest generation WRF model. The modeling results estimated that the dispersion of particles from the tailings dam can contribute up to 10.15 µg/m3 of PM10 to the air quality of the site, which, according to the characterization of the samples obtained, could be dangerous for human health and can be estimated up to a concentration of 0.04 µg/m3 of Pb and 10.90 ng/m3 of As. It is very important to make this kind of research to know the risk which people around this disposal sites are exposed to.


Assuntos
Monitoramento Ambiental , Chumbo , Estados Unidos , Humanos , Monitoramento Ambiental/métodos , Vento , México
12.
Environ Monit Assess ; 195(6): 728, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227564

RESUMO

PM2.5 exposure data are important for air quality management. Optimal planning and determination of locations where PM2.5 is continuously monitored are important for urban areas in Ho Chi Minh City (HCMC), a megacity with specific environmental problems. Objectives of the study to propose an automatic monitoring system network (AMSN) to measure outdoor PM2.5 concentrations in HCMC using low-cost sensors. Data related to the current monitoring network, population, population density, threshold reference standards set by the National Ambient Air Quality Standard (NAAQS) and the World Health Organisation (WHO), and inventory emissions from various sources, both anthropogenic and biogenic, were obtained. Coupled WRF/CMAQ models were used to simulate PM2.5 concentrations in HCMC. The simulation results were extracted from the grid cells, from which the values of points exceeding the set thresholds were determined. The population coefficient was calculated to determine the corresponding total score (TS). Optimisation of the monitoring locations was statistically performed using Student's t-test to select the official locations for the monitoring network. TS values ranged from 0.0031 to 3215.9. The TSmin value was reached in the Can Gio district and the TSmax value was reached in SG1. Based on the t-test results, 26 initial locations were proposed for a preliminary configuration, from which 10 optimal monitoring sites were selected to develop the AMSN of outdoor PM2.5 concentration measurements in HCMC towards 2025.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Cidades , Monitoramento Ambiental/métodos , Material Particulado/análise
13.
J Environ Sci (China) ; 123: 535-544, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522012

RESUMO

The role of PM2.5 (particles with aerodynamic diameters ≤ 2.5 µm) deposition in air quality changes over China remains unclear. By using the three-year (2013, 2015, and 2017) simulation results of the WRF/CUACE v1.0 model from a previous work (Zhang et al., 2021), a non-linear relationship between the deposition of PM2.5 and anthropogenic emissions over central-eastern China in cold seasons as well as in different life stages of haze events was unraveled. PM2.5 deposition is spatially distributed differently from PM2.5 concentrations and anthropogenic emissions over China. The North China Plain (NCP) is typically characterized by higher anthropogenic emissions compared to southern China, such as the middle-low reaches of Yangtze River (MLYR), which includes parts of the Yangtze River Delta and the Midwest. However, PM2.5 deposition in the NCP is significantly lower than that in the MLYR region, suggesting that in addition to meteorology and emissions, lower deposition is another important factor in the increase in haze levels. Regional transport of pollution in central-eastern China acts as a moderator of pollution levels in different regions, for example by bringing pollution from the NCP to the MLYR region in cold seasons. It was found that in typical haze events the deposition flux of PM2.5 during the removal stages is substantially higher than that in accumulation stages, with most of the PM2.5 being transported southward and deposited to the MLYR and Sichuan Basin region, corresponding to a latitude range of about 24°N-31°N.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Estações do Ano , China
14.
J Environ Sci (China) ; 127: 453-464, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522077

RESUMO

Continuous aggravated surface O3 over North China Plain (NCP) has attracted widely public concern. Herein, we evaluated the effects of changes in aerosols, precursor emissions, and meteorology on O3 in summer (June) of 2015-2019 over NCP via 8 scenarios with WRF-Chem model. The simulated mean MDA8 O3 in urban areas of 13 major cities in NCP increased by 17.1%∼34.8%, which matched well with the observations (10.8%∼33.1%). Meanwhile, the model could faithfully reproduce the changes in aerosol loads, precursors, and meteorological conditions. A relatively-even O3 increase (+1.2%∼+3.9% for 24-h O3 and +1.0%∼+3.8% for MDA8 O3) was induced by PM2.5 dropping, which was consistent with the geographic distribution of regional PM2.5 reduction. Meanwhile, the NO2 reduction coupled with a near-constant VOCs led to the elevated VOCs/NOx ratios, and then caused O3 rising in the areas under VOCs-limited regimes. Therein, the pronounced increases occurred in Handan, Xingtai, Shijiazhuang, Tangshan, and Langfang (+10.7%∼+13.6% for 24-h O3 and +10.2%∼+12.2% for MDA8 O3); while the increases in other cities were 5.7%∼10.5% for 24-h O3 and 4.9%∼9.2% for MDA8 O3. Besides, the meteorological fluctuations brought about the more noticeable O3 increases in northern parts (+12.5%∼+13.5% for 24-h O3 and +11.2%∼+12.4% for MDA8 O3) than those in southern and central parts (+3.2%∼+9.3% for 24-h O3 and +3.7%∼+8.8% for MDA8 O3). The sum of the impacts of the three drivers reached 16.7%∼21.9%, which were comparable to the changes of the observed O3. Therefore, exploring reasonable emissions-reduction strategies is essential for the ozone pollution mitigation over this region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Meteorologia , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , Aerossóis , China , Material Particulado/análise
15.
Environ Sci Technol ; 56(10): 6243-6252, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35482889

RESUMO

We developed a regional atmospheric transport model for microplastics (MPs, 10 µm to 5 mm in size) over Asia and the adjacent Pacific and Indian oceans, accounting for MPs' size- and shape-dependent aerodynamics. The model was driven by tuned atmospheric emissions of MPs from the land and the ocean, and the simulations were evaluated against coastal (n = 19) and marine (n = 56) observations. Our tuned atmospheric emissions of MPs from Asia and the adjacent oceans were 310 Gg y-1 (1 Gg = 1 kton) and 60 Gg y-1, respectively. MP lines and fragments may be transported in the atmosphere >1000 km; MP pellets in our model mostly deposited near-source. We estimated that 1.4% of the MP mass emitted into the Asian atmosphere deposited into the oceans via atmospheric transport; the rest deposited over land. The resulting net atmospheric transported MP flux from Asia into the oceans was 3.9 Gg y-1, twice as large as a previous estimate for the riverine-transported MP flux from Asia into the oceans. The uncertainty of our simulated atmospheric MP budget was between factors of 3 and 7. Our work highlighted the impacts of the size and morphology on the aerodynamics of MPs and the importance of atmospheric transport in the source-to-sink relationship of global MP pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ásia , Monitoramento Ambiental , Oceano Índico , Plásticos , Poluentes Químicos da Água/análise
16.
Environ Sci Technol ; 56(20): 14326-14337, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36178303

RESUMO

As important regions of transition between land and sea, the three bay areas of Bohai Bay (BHB), Hangzhou Bay (HZB), and Pearl River Estuary (PRE) in China often suffer from severe photochemical pollution despite scarce anthropogenic emissions. To understand the causes of high ozone (O3) concentrations, the high O3 episode days associated with special synoptic systems in the three bays were identified via observations and simulated by the weather research and forecasting coupled with community multiscale air quality (WRF-CMAQ) model. It was revealed that the interaction between synoptic winds and mesoscale breezes resulted in slow wind speeds over the HZB and PRE, where air pollutants transported from upwind cities gained a long residence time and subsequently participated in intensive photochemical reactions. The net O3 production rates within the bay areas were even comparable to those in surrounding cities. This finding was also applicable to BHB but with lower net O3 production rates, while high levels of background O3 and the regional transport from farther upwind BHB partially elevated the O3 concentrations. Hence, these three bay areas served as O3 "pools" which caused the accumulation of air pollutants via atmospheric dynamics and subsequent intense photochemical reactions under certain meteorological conditions. The results may be applicable to other similar ecotones around the world.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise
17.
Environ Res ; 212(Pt C): 113440, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35526583

RESUMO

This study analyzed an ozone pollution episode that occurred in the summer of 2020 in Zhengzhou, the provincial capital of Henan, China, and quantified the contribution of local and surrounding area anthropogenic emissions to this episode based on the Weather Research and Forecasting with Chemistry (WRF/Chem) model. Simulation results showed that the WRF/Chem model is well suited to simulate the ozone concentrations in this area. In addition, four simulation scenarios (removing the emissions from the northern Zhengzhou, southwestern Zhengzhou, Zhengzhou local and southeastern Zhengzhou) were conducted to explore the specific contributions of local emissions and emissions from surrounding areas within Henan to this ozone pollution episode. We found that contributions from the northern, local, southwestern, and southeastern regions were 6.1%, 5.9%, 1.7%, and 1.5%, respectively. The northern and local emissions of Zhengzhou (only emissions from Zhengzhou) were prominent contributors within the simulation areas. In other words, during this episode, most of the ozone pollution in Zhengzhou appeared to be transported in from regions outside Henan Province.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , China , Monitoramento Ambiental/métodos , Ozônio/análise , Tempo (Meteorologia)
18.
Environ Res ; 213: 113676, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35728639

RESUMO

India's air quality is in a dismal state, with many studies ascribing it to PM2.5. Most of these corroborate that carbonaceous aerosol (CA) constitute significant fraction of PM2.5. However, investigations on the effect of long-term meteorological or emission changes on PM2.5 and its components, and their associated health effects are rare. In this work, WRF-Chem simulations for three seasons over four years (2016-2019) were carried out to cogitate the spatial and temporal changes in PM2.5 and its components in India. Model predicted PM2.5 concentrations were in good agreement with the ground-based observations for 25 cities. PM2.5 was highest in winter and lowest in pre-monsoon. PM2.5 reduced by ∼8% in Indo-Gangetic Plain (IGP) but increased by ∼38% and ∼130% in south and northeast India, respectively, from 2016 to 2019. IGP witnessed three times higher average PM2.5 concentrations than south India. No significant interannual change in CA contributions was observed, however, it peaked in the winter season. Other inorganics (OIN) were the major component of PM2.5, contributing more than 40%. Primary organic aerosol (POA) fractions were higher in north India, while secondary inorganic aerosol (SIA) dominated south India. Transport and residential sectors were the chief contributors to CA across India. Biomass burning contributed up to ∼23% of PM2.5 in regions of IGP during post-monsoon, with CA fractions up to 50%. Associations between PM2.5 and its components with daily inpatient admissions from a tertiary care centre in Delhi showed that PM2.5 and OIN had lower associations with daily hospital admissions than CA. Every 10 µg/m3 increase in POA, black carbon (BC), and secondary organic aerosol (SOA) were associated with ∼1.09%, ∼3.07% and ∼4.93% increase in the risk of daily hospital admissions. This invigorates the need for more policies targeting CA rather than PM2.5 to mitigate associated health risks, in India.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Índia , Material Particulado/análise , Estações do Ano
19.
Environ Res ; 210: 112936, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35181303

RESUMO

The implementation of air pollution control measures could alter the compositions of submicron aerosols. Identifying the changes can evaluate the atmospheric responses of the implemented control measures and provide more scientific basis for the formulation of new measures. The Fen-Wei River Basin is the most air polluted region in China, and thereby is a key area for the reduction of emissions. Only limited studies determine the changes in the chemical compositions of submicron aerosols. In this study, Baoji was selected as a representative city in the Fen-Wei River Basin. The compositions of submicron aerosols were determined between 2014 and 2019. Organic fractions were determined through an online instrument (Quadrupole Aerosol Chemical Speciation Monitor, Q-ACSM) and source recognition was performed by the Multilinear Engine (ME-2). The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was also employed to evaluate the contributions of emissions reduction and meteorological conditions to the changes of submicron aerosol compositions. The results indicate that the mass concentrations of submicron aerosols have been substantially decreased after implementation of air pollution control measures. This was mainly attributed to the emission reductions of sulfur dioxide (SO2) and primary organic aerosol (POA). In addition, the main components that drove the pollution episodes swapped from POA, sulfate, nitrate and less-oxidized organic (LO-OOA) in 2014 to nitrate and more-oxidized OOA (MO-OOA) in 2019. Due to the changes of chemical compositions of both precursors and secondary pollutants, the pollution control measures should be modernized to focus on the emissions of ammonia (NH3), nitrogen oxides (NOx) and volatile organic compounds (VOCs) in this region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental/métodos , Nitratos , Óxidos de Nitrogênio/análise , Material Particulado/análise , Rios
20.
Int J Biometeorol ; 66(7): 1379-1390, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35477801

RESUMO

Land cover change (LCC) significantly changed the local/regional temperature. This paper attempts to reveal the effects of cropland expansion in different ways on temperature change from the 1900s to 2010s in Heilongjiang Province. To reach this goal, we conducted four simulation research schemes with the coupled Weather Research and Forecast (WRF)-Noah model to investigate the warming/cooling effect of cropland expansion. The results show that cropland expansion exerted different effects with different land-use type conversions. In the last century, the areas with grassland-to-cropland and wetland-to-cropland transition show the warming effect, and the average surface temperature in Heilongjiang Province increased by 0.023 ℃ and 0.024 ℃, respectively. The areas with forest-to-cropland transition show the cooling effect, in which the average temperature decreased by 0.103 ℃. The variation of air temperature is mainly caused by the variation of surface reflectance and surface net radiation flux. The results provide evidence that cropland expansion changes to biophysical landscape characteristics, warming/cooling the land surface and thus enhancing/reducing the temperature, and lead to regional climate change eventually.


Assuntos
Mudança Climática , Florestas , China , Produtos Agrícolas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA