Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2318978121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536755

RESUMO

Pressure-induced transformations in an archetypal chalcogenide glass (GeSe2) have been investigated up to 157 GPa by X-ray absorption spectroscopy (XAS) and molecular dynamics (MD) simulations. Ge and Se K-edge XAS data allowed simultaneous tracking of the correlated local structural and electronic changes at both Ge and Se sites. Thanks to the simultaneous analysis of extended X-ray absorption fine structure (EXAFS) signals of both edges, reliable quantitative information about the evolution of the first neighbor Ge-Se distribution could be obtained. It also allowed to account for contributions of the Ge-Ge and Se-Se bond distributions (chemical disorder). The low-density to high-density amorphous-amorphous transformation was found to occur within 10 to 30 GPa pressure range, but the conversion from tetrahedral to octahedral coordination of the Ge sites is completed above [Formula: see text] 80 GPa. No convincing evidence of another high-density amorphous state with coordination number larger than six was found within the investigated pressure range. The number of short Ge-Ge and Se-Se "wrong" bonds was found to increase upon pressurization. Experimental XAS results are confirmed by MD simulations, indicating the increase of chemical disorder under high pressure.

2.
Nano Lett ; 24(5): 1487-1493, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38285518

RESUMO

van der Waals materials provide a versatile toolbox for the emergence of new quantum phenomena and fabrication of functional heterostructures. Among them, the trihalide VI3 stands out for its unique magnetic and structural landscape. Here we investigate the spin and orbital magnetic degrees of freedom in the layered ferromagnet VI3 by means of temperature-dependent X-ray absorption spectroscopy and X-ray magnetic circular and linear dichroism. We detect localized electronic states and reduced magnetic dimensionality, due to electronic correlations. We furthermore provide experimental evidence of (a) an unquenched orbital magnetic moment (up to 0.66(7) µB/V atom) in the ferromagnetic state and (b) an instability of the orbital moment in the proximity of the spin reorientation transition. Our results support a coherent picture where electronic correlations give rise to a strong magnetic anisotropy and a large orbital moment and establish VI3 as a prime candidate for the study of orbital quantum effects.

3.
Small ; 20(28): e2309574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556631

RESUMO

The multi-principal element alloy nanoparticles (MPEA NPs), a new class of nanomaterials, present a highly rewarding opportunity to explore new or vastly different functional properties than the traditional mono/bi/multimetallic nanostructures due to their unique characteristics of atomic-level homogeneous mixing of constituent elements in the nanoconfinements. Here, the successful creation of NiCoCr nanoparticles, a well-known MPEA system is reported, using ultrafast nanosecond laser-induced dewetting of alloy thin films. Nanoparticle formation occurs by spontaneously breaking the energetically unstable thin films in a melt state under laser-induced hydrodynamic instability and subsequently accumulating in a droplet shape via surface energy minimization. While NiCoCr alloy shows a stark contrast in physical properties compared to individual metallic constituents, i.e., Ni, Co, and Cr, yet the transient nature of the laser-driven process facilitates a homogeneous distribution of the constituents (Ni, Co, and Cr) in the nanoparticles. Using high-resolution chemical analysis and scanning nanodiffraction, the environmental stability and grain arrangement in the nanoparticles are further investigated. Thermal transport simulations reveal that the ultrashort (≈100 ns) melt-state lifetime of NiCoCr during the dewetting event helps retain the constituent elements in a single-phase solid solution with homogenous distribution and opens the pathway to create the unique MPEA nanoparticles with laser-induced dewetting process.

4.
Small ; : e2404729, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113671

RESUMO

Development of high-performance, low-cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon-supported ruthenium-copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3 and CuCl2 at 200 A for 10 s produces Ru-Cl residues-decorated Ru nanocrystals dispersed on a CuClx scaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C-3 sample exhibits the best activity in 1 m KOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only -23 and +270 mV to reach 10 mA cm-2, respectively. When RuCu/C-3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm-2, markedly better than that with a mixture of commercial Pt/C+RuO2 (1.59 V). In situ X-ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru-Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high-performance catalysts for electrochemical water splitting.

5.
Small ; 20(29): e2309749, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368266

RESUMO

Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.

6.
Small ; 20(35): e2400012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651508

RESUMO

There is a rising need to create high-performing, affordable electrocatalysts in the new field of oxygen electrochemistry. Here, a cost-effective, activity-modulated electrocatalyst with the capacity to trigger both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in an alkaline environment is presented. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with cobalt-encapsulated carbon nanotube units. Based on X-ray Absorption Spectroscopy (XAS) studies, it is established that the superior reaction kinetics in Al, Co/N-rGCNT over their bulk counterparts can be attributed to their electronic regulation. The Al, Co/N-rGCNT performs as a versatile bifunctional electrocatalyst for zinc-air battery (ZAB), delivering an open circuit potential ≈1.35 V and peak power density of 106.3 mW cm-2, which are comparable to the system based on Pt/C. The Al, Co/N-rGCNT-based system showed a specific capacity of 737 mAh gZn -1 compared to 696 mAh gZn -1 delivered by the system based on Pt/C. The DFT calculations indicate that the adsorption of Co in the presence of Al doping in NGr improves the electronic properties favoring ORR. Thus, the Al, Co/N-rGCNT-based rechargeable ZAB (RZAB) emerges as a highly viable and affordable option for the development of RZAB for practical applications.

7.
J Synchrotron Radiat ; 31(Pt 3): 464-468, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619290

RESUMO

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.

8.
J Synchrotron Radiat ; 31(Pt 3): 456-463, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592971

RESUMO

This study introduces a novel iterative Bragg peak removal with automatic intensity correction (IBR-AIC) methodology for X-ray absorption spectroscopy (XAS), specifically addressing the challenge of Bragg peak interference in the analysis of crystalline materials. The approach integrates experimental adjustments and sophisticated post-processing, including an iterative algorithm for robust calculation of the scaling factor of the absorption coefficients and efficient elimination of the Bragg peaks, a common obstacle in accurately interpreting XAS data, particularly in crystalline samples. The method was thoroughly evaluated on dilute catalysts and thin films, with fluorescence mode and large-angle rotation. The results underscore the technique's effectiveness, adaptability and substantial potential in improving the precision of XAS data analysis. While demonstrating significant promise, the method does have limitations related to signal-to-noise ratio sensitivity and the necessity for meticulous angle selection during experimentation. Overall, IBR-AIC represents a significant advancement in XAS, offering a pragmatic solution to Bragg peak contamination challenges, thereby expanding the applications of XAS in understanding complex materials under diverse experimental conditions.

9.
J Synchrotron Radiat ; 31(Pt 3): 605-612, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592969

RESUMO

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.

10.
J Synchrotron Radiat ; 31(Pt 5): 1276-1284, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088400

RESUMO

Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA