Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(10): 3344-3351, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38832897

RESUMO

Cerebral adrenoleukodystrophy (CALD) is an X-linked rapidly progressive demyelinating disease leading to death usually within a few years. The standard of care is haematopoietic stem cell transplantation (HSCT), but many men are not eligible due to age, absence of a matched donor or lesions of the corticospinal tracts (CST). Based on the ADVANCE study showing that leriglitazone decreases the occurrence of CALD, we treated 13 adult CALD patients (19-67 years of age) either not eligible for HSCT (n = 8) or awaiting HSCT (n = 5). Patients were monitored every 3 months with standardized neurological scores, plasma biomarkers and brain MRI comprising lesion volumetrics and diffusion tensor imaging. The disease stabilized clinically and radiologically in 10 patients with up to 2 years of follow-up. Five patients presented with gadolinium enhancing CST lesions that all turned gadolinium negative and, remarkably, regressed in four patients. Plasma neurofilament light chain levels stabilized in all 10 patients and correlated with lesion load. The two patients who continued to deteriorate were over 60 years of age with prominent cognitive impairment. One patient died rapidly from coronavirus disease 2019. These results suggest that leriglitazone can arrest disease progression in adults with early-stage CALD and may be an alternative treatment to HSCT.


Assuntos
Adrenoleucodistrofia , Progressão da Doença , Humanos , Masculino , Adulto , Adrenoleucodistrofia/tratamento farmacológico , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Feminino , Tiazolidinedionas/uso terapêutico , Imageamento por Ressonância Magnética
2.
Mol Genet Metab ; 140(3): 107680, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567036

RESUMO

The peroxisome is an essential eukaryotic organelle with diverse metabolic functions. Inherited peroxisomal disorders are associated with a wide spectrum of clinical outcomes and are broadly divided into two classes, those impacting peroxisome biogenesis (PBD) and those impacting specific peroxisomal factors. Prior studies have indicated a role for acylcarnitine testing in the diagnosis of some peroxisomal diseases through the detection of long chain dicarboxylic acylcarnitine abnormalities (C16-DC and C18-DC). However, there remains limited independent corroboration of these initial findings and acylcarnitine testing for peroxisomal diseases has not been widely adopted in clinical laboratories. To explore the utility of acylcarnitine testing in the diagnosis of peroxisomal disorders we applied a LC-MS/MS acylcarnitine method to study a heterogenous clinical sample set (n = 598) that included residual plasma specimens from nineteen patients with PBD caused by PEX1 or PEX6 deficiency, ranging in severity from lethal neonatal onset to mild late onset forms. Multiple dicarboxylic acylcarnitines were significantly elevated in PBD patients including medium to long chain (C8-DC to C18-DC) species as well as previously undescribed elevations of malonylcarnitine (C3-DC) and very long chain dicarboxylic acylcarnitines (C20-DC and C22-DC). The best performing plasma acylcarnitine biomarkers, C20-DC and C22-DC, were detected at elevated levels in 100% and 68% of PBD patients but were rarely elevated in patients that did not have a PBD. We extended our analysis to residual newborn screening blood spot cards and were able to detect dicarboxylic acylcarnitine abnormalities in a newborn with a PBD caused by PEX6 deficiency. Similar to prior studies, we failed to detect substantial dicarboxylic acylcarnitine abnormalities in blood spot cards from patients with x-linked adrenoleukodystrophy (x-ald) indicating that these biomarkers may have utility in quickly narrowing the differential diagnosis in patients with a positive newborn screen for x-ald. Overall, our study identifies widespread dicarboxylic acylcarnitine abnormalities in patients with PBD and highlights key acylcarnitine biomarkers for the detection of this class of inherited metabolic disease.


Assuntos
Adrenoleucodistrofia , Transtornos Peroxissômicos , Recém-Nascido , Humanos , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/genética , Biomarcadores , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Am J Med Genet A ; 191(5): 1412-1417, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863699

RESUMO

We report three unrelated individuals, each exposed to maternal autoantibodies during gestation and found to have elevated very long-chain fatty acids (VLCFAs) in the newborn period after screening positive by California newborn screening (NBS) for X-linked adrenoleukodystrophy (ALD). Two probands presented with clinical and laboratory features of neonatal lupus erythematosus (NLE); the third had features suggestive of NLE and a known maternal history of Sjogren's syndrome and rheumatoid arthritis. In all three individuals, subsequent biochemical and molecular evaluation for primary and secondary peroxisomal disorders was nondiagnostic with normalization of VLCFAs by 15 months of age. These cases add to the expanding differential diagnosis to consider in newborns who screen positive for ALD via elevated C26:0-lysophosphatidylcholine. Though the pathophysiology of how transplacental maternal anti-Ro antibodies damage fetal tissue is not well-understood, we postulate that the VLCFA elevations reflect a systemic inflammatory response and secondary peroxisomal dysfunction that improves once maternal autoantibodies wane after birth. Additional evaluation of this phenomenon is warranted to better understand the intricate biochemical, clinical, and possible therapeutic overlap between autoimmunity, inflammation, peroxisomal dysfunction, and human disease.


Assuntos
Adrenoleucodistrofia , Lúpus Eritematoso Sistêmico , Humanos , Recém-Nascido , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/complicações , Triagem Neonatal , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/complicações , Autoanticorpos
4.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983033

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a rare inborn error of the peroxisomal metabolism caused by pathologic variants in the ATP-binding cassette transporter type D, member 1 (ABCD1) gene located on the X-chromosome. ABCD1 protein, also known as adrenoleukodystrophy protein, is responsible for transport of the very long chain fatty acids (VLCFA) from cytoplasm into the peroxisomes. Therefore, altered function or lack of the ABCD1 protein leads to accumulation of VLCFA in various tissues and blood plasma leading to either rapidly progressive leukodystrophy (cerebral ALD), progressive adrenomyeloneuropathy (AMN), or isolated primary adrenal insufficiency (Addison's disease). We report two distinct single nucleotide deletions in the ABCD1 gene, c.253delC [p.Arg85Glyfs*18] in exon 1, leading to both cerebral ALD and to AMN phenotype in one family, and c.1275delA [p.Phe426Leufs*15] in exon 4, leading to AMN and primary adrenal insufficiency in a second family. For the latter variant, we demonstrate reduced mRNA expression and a complete absence of the ABCD1 protein in PBMC. Distinct mRNA and protein expression in the index patient and heterozygous carriers does not associate with VLCFA concentration in plasma, which is in line with the absence of genotype-phenotype correlation in X-ALD.


Assuntos
Doença de Addison , Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/patologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Nucleotídeos/metabolismo , Leucócitos Mononucleares/metabolismo , Fenótipo , RNA Mensageiro , Ácidos Graxos/metabolismo
5.
J Neuroinflammation ; 19(1): 305, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528616

RESUMO

Saturated very long-chain fatty acids (VLCFA, ≥ C22), enriched in brain myelin and innate immune cells, accumulate in X-linked adrenoleukodystrophy (X-ALD) due to inherited dysfunction of the peroxisomal VLCFA transporter ABCD1. In its severest form, X-ALD causes cerebral myelin destruction with infiltration of pro-inflammatory skewed monocytes/macrophages. How VLCFA levels relate to macrophage activation is unclear. Here, whole transcriptome sequencing of X-ALD macrophages indicated that VLCFAs prime human macrophage membranes for inflammation and increased expression of factors involved in chemotaxis and invasion. When added externally to mimic lipid release in demyelinating X-ALD lesions, VLCFAs did not activate toll-like receptors in primary macrophages. In contrast, VLCFAs provoked pro-inflammatory responses through scavenger receptor CD36-mediated uptake, cumulating in JNK signalling and expression of matrix-degrading enzymes and chemokine release. Following pro-inflammatory LPS activation, VLCFA levels increased also in healthy macrophages. With the onset of the resolution, VLCFAs were rapidly cleared in control macrophages by increased peroxisomal VLCFA degradation through liver-X-receptor mediated upregulation of ABCD1. ABCD1 deficiency impaired VLCFA homeostasis and prolonged pro-inflammatory gene expression upon LPS treatment. Our study uncovers a pivotal role for ABCD1, a protein linked to neuroinflammation, and associated peroxisomal VLCFA degradation in regulating macrophage plasticity.


Assuntos
Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Lipopolissacarídeos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Macrófagos/metabolismo
6.
Acta Neuropathol ; 144(2): 241-258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35778568

RESUMO

Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3ß/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia/tratamento farmacológico , Animais , Ensaios Clínicos Fase II como Assunto , Endocanabinoides/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/uso terapêutico
7.
Br J Clin Pharmacol ; 88(6): 2552-2563, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34558098

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited, neurodegenerative rare disease that can result in devastating symptoms of blindness, gait disturbances and spastic quadriparesis due to progressive demyelination. Typically, the disease progresses rapidly, causing death within the first decade of life. With limited treatments available, efforts to determine an effective therapy that can alter disease progression or mitigate symptoms have been undertaken for many years, particularly through drug repurposing. Repurposing has generally been guided through clinical experience and small trials. At this time, none of the drug candidates have been approved for use, which may be due, in part, to the lack of pharmacokinetic/pharmacodynamic information on the repurposed medications in the target patient population. Greater consideration for the disease pathophysiology, drug pharmacology and potential drug-target interactions, specifically at the site of action, would improve drug repurposing and facilitate drug development. Incorporating advanced translational and clinical pharmacological approaches in preclinical studies and early-stage clinical trials will improve the success of repurposed drugs for X-ALD as well as other rare diseases.


Assuntos
Adrenoleucodistrofia , Farmacologia Clínica , Adrenoleucodistrofia/tratamento farmacológico , Progressão da Doença , Reposicionamento de Medicamentos , Humanos , Doenças Raras/tratamento farmacológico
8.
Biol Pharm Bull ; 45(11): 1725-1727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328509

RESUMO

X-linked Adrenoleukodystrophy (X-ALD) is a rare genetic neurological disorder caused by a mutation of the ABCD1 gene that encodes a peroxisomal ABC protein ABCD1. ABCD1 has a role in transporting very long chain fatty acid (VLCFA)-CoA into the peroxisome for ß-oxidation. ABCD1 dysfunction leads to reduced VLCFA ß-oxidation and in turn increased VLCFA levels in the plasma and the cells of all tissues; these increased plasma levels have been used to diagnose X-ALD. It has been reported that plasma VLCFA is not correlated with the severity and disease phenotype of X-ALD. Therefore, we cannot predict the disease progression by the plasma VLCFA level. Cerebrospinal fluid (CSF) is constantly produced by brain, and thus levels of lipids containing VLCFA in CSF might be informative in terms of assessing X-ALD pathology. LC-MS/MS-based analysis showed that phosphatidylcholine (PC) containing VLCFA signals, such as PC 40 : 0(24 : 0/16 : 0), PC 42 : 0(26 : 0/16 : 0), PC 44 : 4(24 : 0/20 : 4) and PC 46 : 4(26 : 0/20 : 4) were characteristically detected only in the CSF from patients with X- ALD. In the present study, we analyzed limited number of patient's CSF samples (2 patients with X-ALD) due to the limitations of the availability for CSF samples from this rare disease. However, our finding would offer helpful information for studying the disease progression biomarkers in X-ALD. To our knowledge, this is the first report of analyzing lipids containing VLCFA in CSF from patients with X-ALD.


Assuntos
Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/metabolismo , Cromatografia Líquida , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Espectrometria de Massas em Tandem , Ácidos Graxos não Esterificados , Lecitinas , Progressão da Doença
9.
Neurol Sci ; 43(5): 3255-3263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34997422

RESUMO

OBJECTIVE: The objective of this study is to describe the typical and atypical clinical and neuroimaging features of ALD in Chinese patients, which will help early diagnosis and intervention to improve prognosis of ALD. METHODS: Forty-one patients in the Leukoencephalopathy Clinic of Neurology Department, Peking Union Medical College Hospital were enrolled. Detailed clinical manifestations and MRI features were analyzed. The relationship between phenotype and genotype as well as biochemical analysis was observed. RESULTS: The patients were classified according to phenotype and onset age, including 14 childhood cerebral ALD (CCALD), 8 adolescent cerebral ALD (adoCALD), 3 adult cerebral ALD (ACALD), 14 adrenomyeloneuropathy (AMN), and 2 ALD in women. AMN was the main presentation in adults. Visual impairment was usual onset symptom in CCALD and cognitive decline and psychiatric symptoms were found in adoCALD and ACALD. Typical MRI feature of CALD was symmetrical peri-ventricular "butterfly wings" like lesions in frontal and/or occipital lobe with peripheral DWI hyperintensities and Gd enhancement. Corpus callosum and internal capsule were always involved. Unilateral lesions were also possible. Cerebral AMN presented with centrum semiovale diffuse involvement. Spinocerebellar variant was a special subtype of AMN with obvious cerebellar and brainstem lesions. No relationships between phenotype and genotype as well as biochemical VLCFAs analysis were found. CONCLUSIONS: We emphasize that corpus callosum and internal capsule are always involved in ALD. A unilateral lesion is also possible. Neuroimaging of cerebral AMN is different from typical CALD with more centrum semiovale involvement. We support spinocerebellar variant was a rare subtype of AMN.


Assuntos
Adrenoleucodistrofia , Adolescente , Adrenoleucodistrofia/diagnóstico por imagem , Adrenoleucodistrofia/genética , Animais , Criança , China , Feminino , Genótipo , Humanos , Neuroimagem , Fenótipo
10.
Yi Chuan ; 44(10): 983-989, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384734

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disease caused by a mutation in the adenosine 5'-triphosphate binding cassette subfamily D member 1 (ABCD1) gene encoding a peroxisomal transmembrane protein, which has various clinical manifestations and a rapid progression from initial symptoms to fatal inflammatory demyelination. Therefore, identification of early clinical symptoms and further early diagnosis as well as treatment can effectively prevent disease development. In this study, we reported the laboratory and radiographic features in a rare case of X-ALD with 3-year skin hyperpigmentation as the only manifestation. And the ABCD1 gene was sequenced for the patient and his parents by a high-throughput sequencing method. The results of laboratory examination showed adrenocortical hypofunction and increased serum concentrations of very long-chain fatty acids. Brain MRI showed no obvious abnormal signal shadow. A hemizygous mutation of c.521A>C was detected in the ABCD1 gene of the patient, and his mother has the same site heterozygous mutation. Therefore, this patient was diagnosed as "X-linked adrenoleukodystrophy". During the follow-up, adrenocortical hypothyroidism did not improve, and brain MRI showed few high-FLAIR signals in the white matter of the right radial corona and left parietal lobe, suggesting possible brain injury. X-ALD patients with only skin manifestations but no neurological abnormalities are easily neglected, but early diagnosis and early intervention are important ways to delay the progression of this disease. Therefore, genetic testing for early X-ALD is recommended in all male children patients with skin pigmentation as the sole clinical presentation and subsequent diagnosis of adrenal hypofunction.


Assuntos
Adrenoleucodistrofia , Hiperpigmentação , Criança , Humanos , Masculino , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/complicações , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Testes Genéticos , Hiperpigmentação/etiologia , Hiperpigmentação/genética , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA