Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(7): 1582-1595.e18, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32492408

RESUMO

N6-methyladenosine (m6A) is the most abundant mRNA nucleotide modification and regulates critical aspects of cellular physiology and differentiation. m6A is thought to mediate its effects through a complex network of interactions between different m6A sites and three functionally distinct cytoplasmic YTHDF m6A-binding proteins (DF1, DF2, and DF3). In contrast to the prevailing model, we show that DF proteins bind the same m6A-modified mRNAs rather than different mRNAs. Furthermore, we find that DF proteins do not induce translation in HeLa cells. Instead, the DF paralogs act redundantly to mediate mRNA degradation and cellular differentiation. The ability of DF proteins to regulate stability and differentiation becomes evident only when all three DF paralogs are depleted simultaneously. Our study reveals a unified model of m6A function in which all m6A-modified mRNAs are subjected to the combined action of YTHDF proteins in proportion to the number of m6A sites.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ligação a RNA/metabolismo , Adenosina/genética , Adenosina/metabolismo , Diferenciação Celular , Células HeLa , Humanos , Metilação , Metiltransferases/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
2.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37949069

RESUMO

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Fosforilação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979586

RESUMO

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Receptores ErbB , Ferroptose , Glioblastoma , Humanos , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Receptores ErbB/genética , Ferroptose/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , RNA Mensageiro/genética
4.
Mol Cell ; 82(12): 2236-2251, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714585

RESUMO

Information in mRNA has largely been thought to be confined to its nucleotide sequence. However, the advent of mapping techniques to detect modified nucleotides has revealed that mRNA contains additional information in the form of chemical modifications. The most abundant modified nucleotide is N6-methyladenosine (m6A), a methyl modification of adenosine. Although early studies viewed m6A as a dynamic and tissue-specific modification, it is now clear that the mRNAs that contain m6A and the location of m6A in those transcripts are largely universal and are influenced by gene architecture, i.e., the size and location of exons and introns. m6A can affect nuclear processes such as splicing and epigenetic regulation, but the major effect of m6A on mRNAs is to promote degradation in the cytoplasm. m6A marks a functionally related cohort of mRNAs linked to certain biological processes, including cell differentiation and cell fate determination. m6A is also enriched in other cohorts of mRNAs and can therefore affect their respective cellular processes and pathways. Future work will focus on understanding how the m6A pathway is regulated to achieve control of m6A-containing mRNAs.


Assuntos
Adenosina , Epigênese Genética , Adenosina/genética , Adenosina/metabolismo , Expressão Gênica , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Nucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Genes Dev ; 36(17-18): 954-955, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347558

RESUMO

RNA binding proteins (RBPs) are important players in RNA metabolism and gene regulation. In this issue of Genes & Development, Flamand and colleagues (pp. 1002-1015) developed a new method (TRIBE-STAMP) that detects binding events by two distinct RBPs on single mRNA molecules, which they first applied to the YTHDF family of N 6-methyladenosine (m6A) reader proteins. The investigators show that these RBPs largely share a common pool of bound transcripts and that an individual mRNA may be bound by multiple YTHDF proteins throughout its lifetime. This single-molecule technique is an exciting new method to study potential synergy and/or antagonism between different RBPs.


Assuntos
Regulação da Expressão Gênica , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/metabolismo , RNA
6.
Genes Dev ; 36(17-18): 1002-1015, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302554

RESUMO

RNA-binding proteins (RBPs) regulate nearly every aspect of mRNA processing and are important regulators of gene expression in cells. However, current methods for transcriptome-wide identification of RBP targets are limited, since they examine only a single RBP at a time and do not provide information on the individual RNA molecules that are bound by a given RBP. Here, we overcome these limitations by developing TRIBE-STAMP, an approach for single-molecule detection of the target RNAs of two RNA binding proteins simultaneously in cells. We applied TRIBE-STAMP to the cytoplasmic m6A reader proteins YTHDF1, YTHDF2, and YTHDF3 and discovered that individual mRNA molecules can be bound by more than one YTHDF protein throughout their lifetime, providing new insights into the function of YTHDF proteins in cells. TRIBE-STAMP is a highly versatile approach that enables single-molecule analysis of the targets of RBP pairs simultaneously in the same cells.


Assuntos
Proteínas de Ligação a RNA , RNA , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Processamento Pós-Transcricional do RNA
7.
Mol Cell ; 81(15): 3048-3064.e9, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216543

RESUMO

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors. eCLIP and m6A sequencing reveal that YTHDF2 interacts with mRNAs encoding proteins in the MAPK pathway that, when stabilized, induce epithelial-to-mesenchymal transition and increase global translation rates. scRibo-STAMP profiling of translating mRNAs reveals unique alterations in the translatome of single cells within YTHDF2-depleted solid tumors, which selectively contribute to endoplasmic reticulum stress-induced apoptosis in TNBC cells. Thus, our work highlights the therapeutic potential of RBPs by uncovering a critical role for YTHDF2 in counteracting the global increase of mRNA synthesis in MYC-driven breast cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a RNA/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Morte Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes myc , Humanos , Camundongos Nus , Camundongos Transgênicos , Biossíntese de Proteínas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cell ; 81(5): 922-939.e9, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434505

RESUMO

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Antineoplásicos/farmacologia , Glutaratos/farmacologia , Glicólise/genética , Lactato Desidrogenases/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fosfofrutoquinase-1 Tipo C/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Células K562 , Lactato Desidrogenases/antagonistas & inibidores , Lactato Desidrogenases/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação Oxidativa/efeitos dos fármacos , Fosfofrutoquinase-1 Tipo C/antagonistas & inibidores , Fosfofrutoquinase-1 Tipo C/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33756105

RESUMO

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Assuntos
Adenosina/análogos & derivados , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estabilidade de RNA , Adenosina/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Biológicos , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
10.
Genes Dev ; 35(13-14): 992-1004, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34140354

RESUMO

Previous work has demonstrated that the epitranscriptomic addition of m6A to viral transcripts can promote the replication and pathogenicity of a wide range of DNA and RNA viruses, including HIV-1, yet the underlying mechanisms responsible for this effect have remained unclear. It is known that m6A function is largely mediated by cellular m6A binding proteins or readers, yet how these regulate viral gene expression in general, and HIV-1 gene expression in particular, has been controversial. Here, we confirm that m6A addition indeed regulates HIV-1 RNA expression and demonstrate that this effect is largely mediated by the nuclear m6A reader YTHDC1 and the cytoplasmic m6A reader YTHDF2. Both YTHDC1 and YTHDF2 bind to multiple distinct and overlapping sites on the HIV-1 RNA genome, with YTHDC1 recruitment serving to regulate the alternative splicing of HIV-1 RNAs. Unexpectedly, while YTHDF2 binding to m6A residues present on cellular mRNAs resulted in their destabilization as previously reported, YTHDF2 binding to m6A sites on HIV-1 transcripts resulted in a marked increase in the stability of these viral RNAs. Thus, YTHDF2 binding can exert diametrically opposite effects on RNA stability, depending on RNA sequence context.


Assuntos
HIV-1 , Adenosina/metabolismo , Processamento Alternativo , HIV-1/genética , HIV-1/metabolismo , Splicing de RNA , Estabilidade de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
EMBO J ; 42(15): e113126, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345898

RESUMO

N6 -methyladenosine (m6 A) in messenger RNA (mRNA) regulates immune cells in homeostasis and in response to infection and inflammation. The function of the m6 A reader YTHDF2 in the tumor microenvironment (TME) in these contexts has not been explored. We discovered that the loss of YTHDF2 in regulatory T (Treg) cells reduces tumor growth in mice. Deletion of Ythdf2 in Tregs does not affect peripheral immune homeostasis but leads to increased apoptosis and impaired suppressive function of Treg cells in the TME. Elevated tumor necrosis factor (TNF) signaling in the TME promotes YTHDF2 expression, which in turn regulates NF-κB signaling by accelerating the degradation of m6 A-modified transcripts that encode NF-κB-negative regulators. This TME-specific regulation of Treg by YTHDF2 points to YTHDF2 as a potential target for anti-cancer immunotherapy, where intratumoral Treg cells can be targeted to enhance anti-tumor immune response while avoiding Treg cells in the periphery to minimize undesired inflammations.


Assuntos
NF-kappa B , Neoplasias , Camundongos , Animais , NF-kappa B/genética , Neoplasias/genética , Transdução de Sinais , Imunoterapia , Inflamação , Microambiente Tumoral
12.
Mol Cell ; 76(1): 96-109.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31474572

RESUMO

Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.


Assuntos
Adenosina/análogos & derivados , Imunidade Inata , Melanoma Experimental/terapia , RNA Circular/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/administração & dosagem , Adenosina/imunologia , Adenosina/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Imunização , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferons/imunologia , Interferons/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Multimerização Proteica , RNA Circular/administração & dosagem , RNA Circular/metabolismo , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos , Ubiquitinação
13.
Mol Cell ; 74(3): 494-507.e8, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30930054

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification in RNAs and plays regulatory roles in a variety of biological and physiological processes. Despite its important roles, the molecular mechanism underlying m6A-mediated gene regulation is poorly understood. Here, we show that m6A-containing RNAs are subject to endoribonucleolytic cleavage via YTHDF2 (m6A reader protein), HRSP12 (adaptor protein), and RNase P/MRP (endoribonucleases). We demonstrate that HRSP12 functions as an adaptor to bridge YTHDF2 and RNase P/MRP, eliciting rapid degradation of YTHDF2-bound RNAs. Transcriptome-wide analyses show that m6A RNAs that are preferentially targeted for endoribonucleolytic cleavage have an HRSP12-binding site and a RNase P/MRP-directed cleavage site upstream and downstream of the YTHDF2-binding site, respectively. We also find that a subset of m6A-containing circular RNAs associates with YTHDF2 in an HRSP12-dependent manner and is selectively downregulated by RNase P/MRP. Thus, our data expand the known functions of RNase P/MRP to endoribonucleolytic cleavage of m6A RNAs.


Assuntos
Adenosina/análogos & derivados , Proteínas de Choque Térmico/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Ribonuclease P/genética , Ribonucleases/genética , Adenosina/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Sítios de Ligação/genética , Escherichia coli/genética , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Metiltransferases/genética , RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA Circular , Transcriptoma/genética
14.
Mol Cell ; 74(4): 640-650, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100245

RESUMO

Cellular RNAs are naturally decorated with a variety of chemical modifications. The structural diversity of the modified nucleosides provides regulatory potential to sort groups of RNAs for organized metabolism and functions, thus affecting gene expression. Recent years have witnessed a burst of interest in and understanding of RNA modification biology, thanks to the emerging transcriptome-wide sequencing methods for mapping modified sites, highly sensitive mass spectrometry for precise modification detection and quantification, and extensive characterization of the modification "effectors," including enzymes ("writers" and "erasers") that alter the modification level and binding proteins ("readers") that recognize the chemical marks. However, challenges remain due to the vast heterogeneity in expression abundance of different RNA species, further complicated by divergent cell-type-specific and tissue-specific expression and localization of the effectors as well as modifications. In this review, we highlight recent progress in understanding the function of N6-methyladenosine (m6A), the most abundant internal mark on eukaryotic mRNA, in light of the specific biological contexts of m6A effectors. We emphasize the importance of context for RNA modification regulation and function.


Assuntos
Adenosina/análogos & derivados , Metilação , RNA Mensageiro/genética , RNA/genética , Adenosina/genética , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica/genética , Especificidade de Órgãos/genética , Processamento Pós-Transcricional do RNA/genética , Transcriptoma
15.
RNA ; 30(5): 468-481, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531646

RESUMO

N 6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA, and it has important functions in mRNA regulation. However, our understanding of the specific functions of m6A along with its cytosolic readers, the YTHDF proteins, has changed substantially in recent years. The original view was that different m6A sites within an mRNA could have different functions depending on which YTHDF paralog was bound to it, with bound YTHDF1 inducing translation, while bound YTHDF2 induced mRNA degradation. As a result, each YTHDF was proposed to have unique physiologic roles that arise from their unique binding properties and regulatory effects on mRNA. More recent data have called much of this into question, showing that all m6A sites bind all YTHDF proteins with equal ability, with a single primary function of all three YTHDF proteins to mediate mRNA degradation. Here, we describe the diverse technical concerns that led to the original model being questioned and the newer data that overturned this model and led to the new understanding of m6A and YTHDF function. We also discuss how any remaining questions about the functions of the YTHDF proteins can be readily resolved.


Assuntos
Proteínas de Transporte , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38622358

RESUMO

N6-methyladenosine (m6A) is the most abundant mRNA modification within mammalian cells, holding pivotal significance in the regulation of mRNA stability, translation and splicing. Furthermore, it plays a critical role in the regulation of RNA degradation by primarily recruiting the YTHDF2 reader protein. However, the selective regulation of mRNA decay of the m6A-methylated mRNA through YTHDF2 binding is poorly understood. To improve our understanding, we developed m6A-BERT-Deg, a BERT model adapted for predicting YTHDF2-mediated degradation of m6A-methylated mRNAs. We meticulously assembled a high-quality training dataset by integrating multiple data sources for the HeLa cell line. To overcome the limitation of small training samples, we employed a pre-training-fine-tuning strategy by first performing a self-supervised pre-training of the model on 427 760 unlabeled m6A site sequences. The test results demonstrated the importance of this pre-training strategy in enabling m6A-BERT-Deg to outperform other benchmark models. We further conducted a comprehensive model interpretation and revealed a surprising finding that the presence of co-factors in proximity to m6A sites may disrupt YTHDF2-mediated mRNA degradation, subsequently enhancing mRNA stability. We also extended our analyses to the HEK293 cell line, shedding light on the context-dependent YTHDF2-mediated mRNA degradation.


Assuntos
Adenina , Proteínas de Ligação a RNA , Fatores de Transcrição , Animais , Humanos , Células HEK293 , Células HeLa , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(14): e2302291120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996116

RESUMO

Overexpression of Ras, in addition to the oncogenic mutations, occurs in various human cancers. However, the mechanisms for epitranscriptic regulation of RAS in tumorigenesis remain unclear. Here, we report that the widespread N6-methyladenosine (m6A) modification of HRAS, but not KRAS and NRAS, is higher in cancer tissues compared with the adjacent tissues, which results in the increased expression of H-Ras protein, thus promoting cancer cell proliferation and metastasis. Mechanistically, three m6A modification sites of HRAS 3' UTR, which is regulated by FTO and bound by YTHDF1, but not YTHDF2 nor YTHDF3, promote its protein expression by the enhanced translational elongation. In addition, targeting HRAS m6A modification decreases cancer proliferation and metastasis. Clinically, up-regulated H-Ras expression correlates with down-regulated FTO and up-regulated YTHDF1 expression in various cancers. Collectively, our study reveals a linking between specific m6A modification sites of HRAS and tumor progression, which provides a new strategy to target oncogenic Ras signaling.


Assuntos
Neoplasias , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Carcinogênese , Transformação Celular Neoplásica/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Transcrição Gênica
18.
J Biol Chem ; 300(4): 107152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462165

RESUMO

Prostate cancer is a leading cause of cancer-related mortality in males. Dysregulation of RNA adenine N-6 methylation (m6A) contributes to cancer malignancy. m6A on mRNA may affect mRNA splicing, turnover, transportation, and translation. m6A exerts these effects, at least partly, through dedicated m6A reader proteins, including YTH domain-containing family protein 2 (YTHDF2). YTHDF2 is necessary for development while its dysregulation is seen in various cancers, including prostate cancer. However, the mechanism underlying the dysregulation and function of YTHDF2 in cancer remains elusive. Here, we find that the deubiquitinase OUT domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) increases YTHDF2 protein stability by inhibiting its ubiquitination. With in vivo and in vitro ubiquitination assays, OTUB1 is shown to block ubiquitin transfer to YTHDF2 independent of its deubiquitinase activity. Furthermore, analysis of functional transcriptomic data and m6A-sequencing data identifies PRSS8 as a potential tumor suppressor gene. OTUB1 and YTHDF2 decrease mRNA and protein levels of PRSS8, which is a trypsin-like serine protease. Mechanistically, YTHDF2 binds PRSS8 mRNA and promotes its degradation in an m6A-dependent manner. Further functional study on cellular and mouse models reveals PRSS8 is a critical downstream effector of the OTUB1-YTHDF2 axis in prostate cancer. We find in prostate cancer cells, PRSS8 decreases nuclear ß-catenin level through E-cadherin, which is independent of its protease activity. Collectively, our study uncovers a key regulator of YTHDF2 protein stability and establishes a functional OTUB1-YTHDF2-PRSS8 axis in prostate cancer.


Assuntos
Proliferação de Células , Enzimas Desubiquitinantes , Neoplasias da Próstata , Proteínas de Ligação a RNA , Serina Endopeptidases , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Estabilidade Proteica , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Serina Endopeptidases/metabolismo , Ubiquitinação
19.
EMBO J ; 40(4): e104975, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428246

RESUMO

N6-methyladenosine (m6 A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6 A alters fly behavior, albeit the underlying molecular mechanism and the role of m6 A during nervous system development have remained elusive. Here we find that impairment of the m6 A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6 A reader in the nervous system, being required to limit axonal growth. Mechanistically, we show that the m6 A reader Ythdf directly interacts with Fmr1, the fly homolog of Fragile X mental retardation RNA binding protein (FMRP), to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6 A pathway controls development of the nervous system and modulates Fmr1 target transcript selection.


Assuntos
Adenosina/análogos & derivados , Axônios/fisiologia , Proteínas de Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/citologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteína do X Frágil da Deficiência Intelectual/genética , Neurônios/fisiologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
20.
Mol Cell ; 67(6): 1059-1067.e4, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867294

RESUMO

YTHDF2 binds and destabilizes N6-methyladenosine (m6A)-modified mRNA. The extent to which this branch of m6A RNA-regulatory pathway functions in vivo and contributes to mammalian development remains unknown. Here we find that YTHDF2 deficiency is partially permissive in mice and results in female-specific infertility. Using conditional mutagenesis, we demonstrate that YTHDF2 is autonomously required within the germline to produce MII oocytes that are competent to sustain early zygotic development. Oocyte maturation is associated with a wave of maternal RNA degradation, and the resulting relative changes to the MII transcriptome are integral to oocyte quality. The loss of YTHDF2 results in the failure to regulate transcript dosage of a cohort of genes during oocyte maturation, with enrichment observed for the YTHDF2-binding consensus and evidence of m6A in these upregulated genes. In summary, the m6A-reader YTHDF2 is an intrinsic determinant of mammalian oocyte competence and early zygotic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Meiose , Oócitos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Transcriptoma , Zigoto/metabolismo , Animais , Sítios de Ligação , Feminino , Fertilidade , Genótipo , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/patologia , Fenótipo , Ligação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Zigoto/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA