RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ruyi Zhenbao Pill (RYZBP) is a traditional Tibetan medicine that has been used for over 300 years in China to treat neurological diseases, specifically neuropathic pain (NP). However, its characteristics and mechanism of action in treating NP remains unclear. AIM OF THE STUDY: Based on animal experiments and transcriptomics to evaluate the characteristics and mechanism of RYZBP in treating NP. METHODS: Mice were divided into six groups using random assignment: sham-operation group, spinal nerve ligation (SNL) group, RYZBP low (0.65 g kg-1), medium (1.30 g kg-1), high (2.60 g kg-1) doses groups, and positive drug pregabalin (PGB, 0.05 g kg-1) group. Mice received intragastrical administered for 14 consecutive days. SNL and intrathecal injection models were employed. The analgesic effects were assessed using the Von Frey test, Acetone test, and Hot Plate test. L5 spinal dorsal horns were collected for transcriptomics on day 15. The potential signaling pathways and Hub genes of RYZBP to ameliorate NP were obtained through transcriptomics and network pharmacology. Molecular docking was utilized to evaluate the binding ability of candidate active ingredients with the Hub genes. Finally, western blot (WB) and immunofluorescence (IF) were used to validate the predicted targets. RESULTS: RYZBP demonstrated a dose-dependent alleviation of mechanical allodynia, cold and heat stimulus-induced pain in SNL mice. Transcriptomics analysis identified 24 differentially expressed genes, and pathway enrichment analysis revealed that the CXCL10-CXCR3 signal axis may be the primary biological pathway through which RYZBP relieve NP. Molecular docking test indicated that the active ingredient in RYZBP exhibit a strong affinity for the target protein CXCL10. WB and IF tests showed that RYZBP can significantly inhibit CXCL10 and CXCR3 and its downstream molecules expression in the spinal dorsal horn of SNL mice. Additionally, intrathecal injection of rmCXCL10 worsened pain hypersensitivity, while RYZBP was able to suppress the pain hypersensitivity response induced by rmCXCL10 and reduce the expression levels of CXCL10 and CXCR3 and its downstream molecules. CONCLUSION: RYZBP had a significant analgesic effect on NP model, and this effect may be related to inhibiting the CXCL10-CXCR3 pathway in the spinal dorsal horn.
Assuntos
Medicina Tradicional Tibetana , Neuralgia , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Medula Espinal , Nervos Espinhais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , LigaduraRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ruyi Zhenbao Pill (RZP) is a prescribed Tibetan formulation for the treatment of white-pulse-disease, yellow-water-disease as well as pain-related disease. RZP is composed of 30 medicinal materials including herbal medicine, animal medicine and mineral medicine. They are widely used in the Tibetan area to treat cerebrovascular disease, hemiplegia, rheumatism, and pain diseases for centuries. AIM OF THE STUDY: The aim of the present study was to evaluate the anti-osteoarthritis function of RZP and to clarify the underlying mechanisms. MATERIALS AND METHODS: The active components in RZP were identified using HPLC methods. Osteoarthritis (OA) animal model was established via intra-articular injection of papain in rat knees. After the administration of RZP (0.45, 0.9 g/kg) for 28 days, the clinical observation was conducted, and pathological changes as well as serum biochemical indexes were detected. Moreover, therapeutic targets and pathways of RZP were discussed. RESULTS: The results showed that RZP could suppress knee joint swelling and arthralgia, thus relieving joint pain and inflammation in OA rats. Microcomputed tomography (µCT)-based physiological imaging and staining pictures confirmed the therapeutic effects of RZP on OA symptoms including knee joint swelling and structural changes with progressive inflammation in OA rats. RZP could promote the synthesis or inhibit the degradation of COLâ ¡, attenuate OA-induced OPN up-regulation and thus relieve the OA symptom. Furthermore, RZP (0.45-0.9 g/kg) could all ameliorate the imbalance of biomarkers related to OA such as MMP1, TNF-α, COX2, IL-1ß and iNOS in knee joints or serum. CONCLUSION: In conclusion, RZP could effectively relieve inflammatory reaction induced by OA injury and the formulation could be applied to the treatment of OA therapy.
Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Tibet , Microtomografia por Raio-X , Osteoartrite/tratamento farmacológico , Inflamação/patologia , Artralgia/patologia , Modelos Animais de DoençasRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The Zhenbao pill (ZBP) is composed of 29 traditional Chinese medicines and has been proven to exhibit a valid therapeutic effect in nervous system diseases, such as stroke and hemiplegia sequelae. AIM OF THE STUDY: Whether ZBP has a protective effect on vascular endothelial cells remains unknown. In this study, we established hydrogen peroxide (H2O2)-induced oxidative injury in human umbilical vein endothelial cells (HUVECs) as an in vitro model to investigate the pharmacological effects of ZBP. MATERIALS AND METHODS: Following the intragastric administration of ZBP (0.25, 0.5, and 1 g/kg for seven days) in rats, drug-containing serum was obtained and cultivated with HUVECs before H2O2 treatment. The viability of HUVECs in the presence of H2O2 was measured by Cell Counting Kit-8 assay, lactate dehydrogenase assay, and flow cytometry. Furthermore, we estimated the effects of ZBP on the production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Autophagic puncta were detected using a fluorescence microscope. Western blotting and real-time polymerase chain reaction were used to detect the expression levels of several genes associated with apoptosis and autophagy. RESULTS: Drug-containing serum separated from rats at 1 h after intragastric administration of ZBP (0.5 g/kg) significantly offered a protective effect to HUVECs and reduced cell apoptosis rates. Meanwhile, ZBP-containing serum also repressed ROS production induced by H2O2 exposure and maintained MMP. Further investigation revealed that ZBP-containing serum effectively reduced the accumulation of autophagic puncta. ZBP-mediated inhibition on cell autophagy was found to contribute to ameliorating cell apoptosis. Western blotting also confirmed that ZBP maintained AKT and mTOR phosphorylation and antagonized the imbalance of BCL2/BAX, thereby protecting cells from apoptosis. CONCLUSION: Taken together, our data indicate that ZBP inhibits ROS production, mitochondrial damage, cell autophagy, and cell apoptosis. ZBP can offer protection to vascular endothelial cells against oxidative injury through the antagonism of apoptosis and autophagy. Thus, this study enhances the understanding of the therapeutic effects and mechanisms of ZBP in the process of recovery from myocardial and cerebral ischemic stroke.
Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
The aim of the present study was to observe the effect of zhenbao pill on the motor function of acute spinal cord injury (ASCI) rats and the molecular mechanisms involving miR-146a-5p and G-protein-coupled receptor 17 (GPR17). ASCI rat model was established by modified Allen method, and then the rats were divided into three groups. SH-SY5Y cells were cultured overnight in hypoxia condition and transfected with miR-146a-5p mimic or miR-146a-5p inhibitor. The hind limb motor function of the rats was evaluated by Basso, Beattie, Bresnahan (BBB) scoring system. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of miR-146a-5p, GPR17, inducible nitric oxide synthase (iNOS), interleukin 1ß (IL-1ß), and tumor necrosis factor α (TNF-α). Neuronal apoptosis was measured using flow cytometry assay. Luciferase reporter assay was performed to determine the regulation of miR-146a-5p on GPR17. Zhenbao pill could enhance hind limb motor function and attenuate the inflammatory response caused by ASCI. Moreover, zhenbao pill increased the level of miR-146a-5p and decreased GPR17 expression in vivo and in vitro Bioinformatics software predicted that GPR17 3'-UTR had a binding site with miR-146a-5p Luciferase reporter assay showed that miR-146a-5p had a negative regulatory effect on GPR17 expression. Knockdown of miR-146a-5p could reverse the effect of zhenbao pill on the up-regulation of GPR17 induced by hypoxia, reversed the inhibitory effect of zhenbao pill on the cell apoptosis induced by hypoxia and the recovery of zhenbao pill on hind limb motor function in ASCI rats. Zhenbao pill could inhibit neuronal apoptosis by regulating miR-146a-5p/GPR17 expression, and then promoting the recovery of spinal cord function.
Assuntos
Medicina Tradicional Chinesa , MicroRNAs/genética , Receptores Acoplados a Proteínas G/genética , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Ratos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologiaRESUMO
Background: Acute spinal cord injury (SCI) is one of the weakest pathologies that seriously affect the quality of life of patients. Objective: To study the mechanism of how Zhenbao Pill reduces Treg cell proportion and improves acute SCI. Methods: A rat SCI model was established. Flow cytometry analysis was performed to determine the Treg cell proportion. RNA immunoprecipitation (RIP) and RNA pull-down were applied in confirming taurine up-regulated gene 1 (TUG1) and miR-214 binding. Intrathecal injection of TUG1 siRNA was also conducted to determine the effect of TUG1 in vivoResults: Zhenbao Pill promoted the expression of TUG1 and heat shock protein 27 (HSP27) protein, and reduced the expression of miR-214 and forkhead box protein p3 (Foxp3) as well as Treg cell proportion in a concentration-dependent manner in SCI rats or in vitro cultured CD4+ T cells. Knockdown of TUG1 reversed the high protein expression of HSP27 and the inhibition of Treg cell proportion as well as Foxp3 protein induced by Zhenbao Pill, and miR-214 inhibitor canceled the TUG1 knockdown effect. Further, miR-214 mimic reversed the inhibition of Treg cell proportion and Foxp3 protein expression by Zhenbao Pill, which was abolished by the overexpression of HSP27. The mechanism was validated in animal experiments. Conclusion: Zhenbao Pill regulated TUG1/miR-214/HSP27 signaling pathway to reduce Treg cell proportion and thus relieve acute SCI.
Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas de Choque Térmico HSP27/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa/métodos , Ratos , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Linfócitos T Reguladores/efeitos dos fármacosRESUMO
The present study aimed to investigate the effect and underlying mechanisms of the Ruyi Zhenbao pill on neurological function following cerebral ischemia/reperfusion in rats. Male Sprague-Dawley rats underwent middle cerebral artery occlusion following reperfusion. The rats received intragastrically either sodium carboxymethyl cellulose (control and model groups) or Ruyi Zhenbao pill at doses of 0.2, 0.4 or 0.8 g/kg. Neurological function was assessed by cylinder, adhesive and beam-walking tests after 14-day Ruyi Zhenbao pill treatment. Neurogenesis and angiogenesis were detected using immunoï¬uorescence staining. The expression levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were determined by enzyme-linked immunosorbent assays. Treatment with 0.4 and 0.8 g/kg Ruyi Zhenbao for 14 days signiï¬cantly improved neurological function, and increased the number of von Willebrand Factor- and neuronal nuclear antigen-positive cells in the ischemic hemisphere of rats. Ruyi Zhenbao pill treatment also significantly enhanced the expression levels of BDNF, NGF and VEGF in the ischemic hemisphere. The results demonstrated that the Ruyi Zhenbao pill improved neurological function following ischemia in rats. The mechanisms of the Ruyi Zhenbao pill are associated with increasing the expression levels of BDNF, NGF and VEGF, and subsequently promoting neurogenesis and angiogenesis in the ischemic zone.