RESUMO
Polycystic Echinococcosis (PE), a neglected life-threatening zoonotic disease caused by the cestode Echinococcus vogeli, is endemic in the Amazon. Despite being treatable, PE reaches a case fatality rate of around 29% due to late or missed diagnosis. PE is sustained in Pan-Amazonia by a complex sylvatic cycle. The hunting of its infected intermediate hosts (especially the lowland paca Cuniculus paca) enables the disease to further transmit to humans, when their viscera are improperly handled. In this study, we compiled a unique dataset of host occurrences (~86000 records) and disease infections (~400 cases) covering the entire Pan-Amazonia and employed different modeling and statistical tools to unveil the spatial distribution of PE's key animal hosts. Subsequently, we derived a set of ecological, environmental, climatic, and hunting covariates that potentially act as transmission risk factors and used them as predictors of two independent Maximum Entropy models, one for animal infections and one for human infections. Our findings indicate that temperature stability promotes the sylvatic circulation of the disease. Additionally, we show how El Niño-Southern Oscillation (ENSO) extreme events disrupt hunting patterns throughout Pan-Amazonia, ultimately affecting the probability of spillover. In a scenario where climate extremes are projected to intensify, climate change at regional level appears to be indirectly driving the spillover of E. vogeli. These results hold substantial implications for a wide range of zoonoses acquired at the wildlife-human interface for which transmission is related to the manipulation and consumption of wild meat, underscoring the pressing need for enhanced awareness and intervention strategies.
Assuntos
Equinococose , Echinococcus , Animais , Humanos , Hotspot de Doença , Equinococose/epidemiologia , Zoonoses/epidemiologia , Fatores de Risco , El Niño Oscilação SulRESUMO
Emerging and endemic zoonotic diseases continue to threaten human and animal health, our social fabric, and the global economy. Zoonoses frequently emerge from congregate interfaces where multiple animal species and humans coexist, including farms and markets. Traditional food markets are widespread across the globe and create an interface where domestic and wild animals interact among themselves and with humans, increasing the risk of pathogen spillover. Despite decades of evidence linking markets to disease outbreaks across the world, there remains a striking lack of pathogen surveillance programs that can relay timely, cost-effective, and actionable information to decision-makers to protect human and animal health. However, the strategic incorporation of environmental surveillance systems in markets coupled with novel pathogen detection strategies can create an early warning system capable of alerting us to the risk of outbreaks before they happen. Here, we explore the concept of "smart" markets that utilize continuous surveillance systems to monitor the emergence of zoonotic pathogens with spillover potential.IMPORTANCEFast detection and rapid intervention are crucial to mitigate risks of pathogen emergence, spillover and spread-every second counts. However, comprehensive, active, longitudinal surveillance systems at high-risk interfaces that provide real-time data for action remain lacking. This paper proposes "smart market" systems harnessing cutting-edge tools and a range of sampling techniques, including wastewater and air collection, multiplex assays, and metagenomic sequencing. Coupled with robust response pathways, these systems could better enable Early Warning and bolster prevention efforts.
Assuntos
Doenças Transmissíveis Emergentes , Monitoramento Epidemiológico , Animais , Humanos , Animais Selvagens , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/prevenção & controle , Zoonoses/epidemiologia , Zoonoses/prevenção & controleRESUMO
First reported in August 2022, the Langya virus (LayV) has emerged as a potential global health threat in the post-COVID-19 era. Preliminary reports show that 35 patients near Shandong and Henan, China experienced a febrile acute LayV infection. We conducted this review following the PRISMA protocol to synthesise current knowledge on LayV's characteristics in terms of molecular, clinical, and public health perspectives. This virus belongs to the Paramyxoviridae family and carries a non-segmented, single-stranded negative-sense RNA genome. Shrews may be the natural reservoir of the virus. Clinical symptoms range from mild flu-like symptoms to severe manifestations involving pneumonia, haematological disorders, and organ dysfunction. Diagnostic methods include PCR and ELISA assays. Despite the absence of established treatments, antiviral drugs such as ribavirin and chloroquine may be useful in some cases. In light of prevention, a comprehensive approach that emphasises multidisciplinary collaboration is crucial for early surveillance and response. Urgent global efforts are needed for vaccine development and preparedness against this potential pandemic threat. As the viral dynamics remain uncertain, a proactive approach is vital to mitigate the impact of not only LayV but also future threats on a large scale in long term.
Assuntos
COVID-19 , Henipavirus , Zoonoses , Animais , Humanos , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , SARS-CoV-2 , Antivirais/uso terapêuticoRESUMO
Urbanization is rapidly transforming much of Southeast Asia, altering the structure and function of the landscape, as well as the frequency and intensity of the interactions between people, animals, and the environment. In this study, we explored the impact of urbanization on zoonotic disease risk by simultaneously characterizing changes in the ecology of animal reservoirs (rodents), ectoparasite vectors (ticks), and pathogens across a gradient of urbanization in Kuching, a city in Malaysian Borneo. We sampled 863 rodents across rural, developing, and urban locations and found that rodent species diversity decreased with increasing urbanization-from 10 species in the rural location to 4 in the rural location. Notably, two species appeared to thrive in urban areas, as follows: the invasive urban exploiter Rattus rattus (n = 375) and the native urban adapter Sundamys muelleri (n = 331). R. rattus was strongly associated with built infrastructure across the gradient and carried a high diversity of pathogens, including multihost zoonoses capable of environmental transmission (e.g., Leptospira spp.). In contrast, S. muelleri was restricted to green patches where it was found at high densities and was strongly associated with the presence of ticks, including the medically important genera Amblyomma, Haemaphysalis, and Ixodes. Our analyses reveal that zoonotic disease risk is elevated and heterogeneously distributed in urban environments and highlight the potential for targeted risk reduction through pest management and public health messaging.
Assuntos
Carrapatos , Urbanização , Animais , Sudeste Asiático , Cidades , Humanos , Murinae , Ratos , Zoonoses/epidemiologiaRESUMO
Campylobacter jejuni - a Gram-negative bacterium - is considered the fourth cause of diarrheic diseases that can form biofilms (mono and multi-species) or colonize pre-existing biofilms adhering to both, inert or biotic surfaces; its biofilms contribute to transmission through the food chain and survival under harsh environmental conditions. Thus, developing alternatives against this pathogen is compulsory. Nanomaterials have revolutionized the way of fighting infections related to biofilms due to their unique properties compared to traditional antibiotics. Nanomaterials have also been used against C. jejuni based on zinc, titanium, silver, molybdenum, magnesium, cobalt, erbium, lithium, nickel, hydroxide, polyethylene, graphene, lipids, chitosan, and poly(lactic-co-glycolic acid) (PLGA). Those organic and inorganic materials have synthesized nanoparticles, nanofillers, nanowires, nanoferrites, double layers, nanocomposites, and films that have encapsulated, entrapped, coated or doped molecules. Additionally, bare metal nanoparticles have been tested by their antimicrobial activity on planktonic and sessile forms. Therefore, the present review aimed to describe general biology, virulence factors, host-pathogen relationships and biofilm formation, as well as nanomaterials and nanoparticles fighting against C. jejuni biofilms. Considerations are presented and placed in perspective.
RESUMO
In recent decades, the global rise of viral emerging infectious diseases has posed a substantial threat to both human and animal health worldwide. The rapid spread and accumulation of mutations into viruses, and the limited availability of antiviral drugs and vaccines, stress the urgent need for alternative therapeutic strategies. Antimicrobial peptides (AMPs) derived from natural sources present a promising avenue due to their specificity and effectiveness against a broad spectrum of pathogens. The present study focuses on investigating the antiviral potential of oreochromicin-1 (oreoch-1), a fish-derived AMP obtained from Nile tilapia, against a wide panel of animal viruses including canine distemper virus (CDV), Schmallenberg virus (SBV), caprine herpesvirus 1 (CpHV-1), and bovine herpesvirus 1 (BoHV-1). Oreoch-1 exhibited a strong antiviral effect, demonstrating an inhibition of infection at concentrations in the micromolar range. The mechanism of action involves the interference with viral entry into host cells and a direct interaction between oreoch-1 and the viral envelope. In addition, we observed that the peptide could also interact with the cell during the CDV infection. These findings not only highlight the efficacy of oreoch-1 in inhibiting viral infection but also emphasize the potential of fish-derived peptides, specifically oreoch-1, as effective antiviral agents against viral infections affecting animals, whose potential to spill into humans is high. This research contributes valuable insights to the ongoing quest for novel antiviral drugs with the potential to mitigate the impact of infectious diseases on a global scale.
Assuntos
Antivirais , Animais , Antivirais/farmacologia , Antivirais/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Humanos , Testes de Sensibilidade Microbiana , Chlorocebus aethiops , Internalização do Vírus/efeitos dos fármacosRESUMO
Ticks are not only bloodsucking ectoparasites but also important vectors of tick-borne diseases (TBDs), posing significant threats to public and animal health. Domesticated animals serve as critical hosts for numerous ticks, highlighting the importance of understanding tick infestations in Taiwan. To address this knowledge gap, we conducted a nationwide survey to identify ticks on domesticated animals and associated environments in 2018 and 2019. A total of 6,205 ticks were collected from 1,337 host animals, revealing the presence of seven tick species, with Rhipicephalus microplus, and Rhipicephalus sanguineus being the dominant species. High infestation rates and widespread distribution of ticks were observed on domesticated animals, especially on dogs and cattle (yellow cattle and angus cattle), and the neighbouring grassland of yellow cattle. While this study has certain limitations, it provides valuable insights into the distribution and prevalence of ticks on domesticated animals in Taiwan and their implications for controlling TBDs. Further research is needed to comprehensively understand the complex interactions among ticks, hosts and pathogens.
Assuntos
Doenças dos Bovinos , Doenças do Cão , Rhipicephalus , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Cães , Animais Domésticos , Taiwan/epidemiologia , Saúde Pública , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças do Cão/parasitologiaRESUMO
BACKGROUND: European epidemic intelligence (EI) systems receive vast amounts of information and data on disease outbreaks and potential health threats. The quantity and variety of available data sources for EI, as well as the available methods to manage and analyse these data sources, are constantly increasing. Our aim was to identify the difficulties encountered in this context and which innovations, according to EI practitioners, could improve the detection, monitoring and analysis of disease outbreaks and the emergence of new pathogens. METHODS: We conducted a qualitative study to identify the need for innovation expressed by 33 EI practitioners of national public health and animal health agencies in five European countries and at the European Centre for Disease Prevention and Control (ECDC). We adopted a stepwise approach to identify the EI stakeholders, to understand the problems they faced concerning their EI activities, and to validate and further define with practitioners the problems to address and the most adapted solutions to their work conditions. We characterized their EI activities, professional logics, and desired changes in their activities using Nvivoâ software. RESULTS: Our analysis highlights that EI practitioners wished to collectively review their EI strategy to enhance their preparedness for emerging infectious diseases, adapt their routines to manage an increasing amount of data and have methodological support for cross-sectoral analysis. Practitioners were in demand of timely, validated and standardized data acquisition processes by text mining of various sources; better validated dataflows respecting the data protection rules; and more interoperable data with homogeneous quality levels and standardized covariate sets for epidemiological assessments of national EI. The set of solutions identified to facilitate risk detection and risk assessment included visualization, text mining, and predefined analytical tools combined with methodological guidance. Practitioners also highlighted their preference for partial rather than full automation of analyses to maintain control over the data and inputs and to adapt parameters to versatile objectives and characteristics. CONCLUSIONS: The study showed that the set of solutions needed by practitioners had to be based on holistic and integrated approaches for monitoring zoonosis and antimicrobial resistance and on harmonization between agencies and sectors while maintaining flexibility in the choice of tools and methods. The technical requirements should be defined in detail by iterative exchanges with EI practitioners and decision-makers.
Assuntos
Saúde Digital , Surtos de Doenças , Animais , Humanos , Europa (Continente)/epidemiologia , Surtos de Doenças/prevenção & controle , Saúde Pública , InteligênciaRESUMO
Quantifying the impact of poor animal health outcomes on human health represents a complex challenge. Using the disability-adjusted life year (DALY) metric as an endpoint, this article discusses how animal health outcomes can impact humans through three key processes: directly through zoonotic disease, indirectly via changes in yields and their impacts on nutrition and wealth, and finally, through indirect features associated with the agricultural industry, such as pharmaceuticals and climate change. For each process, the current state of the art and feasibility of global DALY-associated estimates are discussed. Existing frameworks for zoonoses already consider some key pathogens; ensuring completeness in the pathogens considered and consistency in methodological decisions is an important next step. For diet, risk factor frameworks enable a calculation of attributable DALYs; however, significant economic methodological developments are needed to ensure that local production changes are appropriately mapped to both local and global changes in dietary habits. Concerning wealth-related impacts, much work needs to be done on method development. Industry-related impacts require a focus on key research topics, such as attribution studies for animal antimicrobial resistance contributing to human outcomes. For climate change, a critical next step is identifying to what extent associated industry emissions are amenable to change should animal health outcomes improve. Allocation of finite funds to improve animal health must also consider the downstream impact on humans. Leveraging DALYs enables comparisons with other human health-related decisions and would represent a transformative way of approaching animal health decision-making should the obstacles in this article be addressed and new methods be developed.
La quantification de l'impact des problèmes de santé animale sur la santé humaine constitue un défi d'une grande complexité. En se servant de l'indicateur des années de vie ajustées sur l'incapacité (DALY) comme critère d'évaluation, les auteurs examinent trois processus essentiels illustrant l'impact que la situation zoosanitaire peut avoir sur la santé humaine : impact direct résultant des maladies zoonotiques, impact indirect résultant des mauvaises performances des animaux et de leurs conséquences sur la nutrition et la création de richesses, et enfin, effets indirects résultant de facteurs en lien avec le secteur agricole, par exemple l'utilisation de produits pharmaceutiques et le changement climatique. Pour chacun de ces processus, les auteurs font le point sur l'état actuel des connaissances et sur l'applicabilité des évaluations mondiales basées sur l'indicateur DALY. Les cadres existants relatifs aux zoonoses recouvrent déjà certains agents pathogènes majeurs ; la prochaine étape importante consistera à assurer une couverture complète des agents pathogènes et à veiller à la cohérence des décisions méthodologiques. S'agissant de l'alimentation, les cadres basés sur l'analyse des facteurs de risque permettent de calculer les DALY imputables à l'alimentation ; toutefois, d'importantes avancées méthodologiques sur les aspects économiques de cette corrélation seront nécessaires pour s'assurer que tout changement intervenant localement en matière de production animale est correctement mis en correspondance avec les modifications des habitudes alimentaires dans ce même contexte local mais aussi à l'échelle mondiale. S'agissant des impacts liés à la création de richesses, il reste beaucoup à faire dans le domaine méthodologique. La détermination des impacts liés aux filières d'élevage requiert des travaux axés sur des sujets précis, par exemple des études visant à déceler les sources de la résistance aux agents antimicrobiens qui contribuent à l'apparition d'antibiorésistances chez l'être humain. Enfin, pour ce qui concerne le changement climatique, une étape cruciale consistera à déterminer dans quelle mesure les émissions associées à l'élevage sont susceptibles de changer en cas d'amélioration de la situation zoosanitaire. Dans un contexte de ressources limitées, l'affectation de fonds à l'amélioration de la santé animale doit également prendre en compte l'impact en aval sur la santé humaine. L'utilisation de l'indicateur DALY permet des comparaisons avec d'autres décisions de santé publique et représenterait une approche transformative de la prise de décision en santé animale, dès lors que les obstacles mentionnés dans cet article sont surmontés et que de nouvelles méthodes sont mises au point.
Cuantificar el impacto de una mala sanidad animal en la salud humana es un desafío complejo. Utilizando el parámetro de años de vida ajustados en función de la discapacidad (AVAD o DALY) como criterio de valoración, en este artículo se examina cómo la sanidad animal puede repercutir en los seres humanos a través de tres procesos clave: directamente, a través de las zoonosis; indirectamente, a través de cambios en los rendimientos y sus repercusiones en la nutrición y la riqueza; y, por último, a través de factores indirectos asociados a la industria agropecuaria, como los fármacos y el cambio climático. Para cada uno de estos procesos, se examinan el estado actual y la viabilidad de estimar AVAD a escala mundial. Los marcos existentes para la zoonosis ya tienen en cuenta algunos patógenos claves; garantizar la exhaustividad de los patógenos considerados y la coherencia en las decisiones metodológicas es un próximo paso importante. En lo que respecta a la alimentación, aunque los marcos de factores de riesgo permiten calcular los AVAD atribuibles, se necesitan importantes avances metodológicos en el ámbito económico para asegurar que los cambios en la producción local se correspondan adecuadamente con los cambios locales y mundiales en los hábitos alimentarios. En cuanto a las repercusiones en la riqueza, queda mucho trabajo por hacer en el desarrollo de métodos. Para abordar las repercusiones relacionadas con la industria, es necesario centrarse en temas clave de investigación, como los estudios de atribución relativos al impacto en la salud humana de la resistencia a los antimicrobianos en los animales. En lo que se refiere al cambio climático, un próximo paso crucial es determinar en qué medida las emisiones de la industria podrían cambiar, en función de la mejora de los resultados en materia de sanidad animal. Al asignar fondos limitados para la mejora de la sanidad animal también se deben tener en cuenta las repercusiones correspondientes en los seres humanos. Utilizar los AVAD permite hacer comparaciones con otras decisiones importantes relacionadas con la salud humana y representaría una forma transformadora de enfocar la toma de decisiones en materia de sanidad animal, en caso de que se aborden los obstáculos presentados en ese artículo y se desarrollen nuevos métodos.
Assuntos
Mudança Climática , Zoonoses , Animais , Humanos , Agricultura , Anos de Vida Ajustados por Deficiência , Saúde Global , Efeitos Psicossociais da Doença , Doenças dos Animais/prevenção & controle , Doenças dos Animais/epidemiologia , Doenças dos Animais/economiaRESUMO
Zoonoses, diseases transmitted from animals to humans, continue to challenge public health despite advancements in controlling infectious diseases. The intricate link between human, animal, and environmental health is emphasised by the fact that zoonoses contribute to 60% of emerging human infections. Wet markets, wildlife hunting, intensive wildlife farming, and interactions between domestic animals and humans are key transmission sources. Historical examples like the bubonic plague and English Sweats illustrate the longstanding impact of zoonotic diseases. With new transmission patterns emerging, it is necessary to use new techniques to predict disease spread. This article delves into the emergence of new zoonoses, such as the Nipah virus and the SARS-CoV-2 pandemic, emphasizing the importance of understanding zoonotic aspects for outbreak prevention. Re-emerging zoonoses, like tuberculosis and vaccine-preventable diseases, present challenges, exacerbated by factors like globalized human activities and disruptions caused by the COVID-19 pandemic. Public health implications are explored, including economic losses, antibiotic resistance, and the disruption of international trade.
Assuntos
COVID-19 , Saúde Pública , Zoonoses , Humanos , Animais , Zoonoses/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , SARS-CoV-2 , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Pandemias/prevenção & controleRESUMO
The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record-a long-term archive of human-animal-environmental interactions-has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and 'disease-scapes' from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the '-omics' can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.
Assuntos
Ecossistema , Saúde Única , Animais , Humanos , Arqueologia , Zoonoses/epidemiologia , EcologiaRESUMO
This lecture transcript is divided in four parts. First, I examine the main public-health strategies in managing the COVID-19 pandemic. Although there are numerous factors capable of explaining national differences in COVID-19 mortality that are not attributable to merits or demerits of governments, I have identified five lethal errors (lack of preparation, misinformation, medicalisation, a policy approach based on a 'laissez-faire' attitude to the virus and social inequity) and four vital actions (testing, tracing, isolating with support, timeliness and immunisation) that best distinguish success or failure in tackling the pandemic. In the second part, I analyse the origin of SARS-CoV-2 and major risk factors for emerging zoonotic diseases (e.g. exploitation of animal wildlife, deforestation, agricultural intensification and climate change) to be addressed to prevent future pandemics. Then, I discuss the interrelationships between the COVID-19 pandemic and the ecological crisis in the context of the so-called neoliberal variant of capitalism. Both crises are largely determined by anthropogenic risk factors influenced by a model of economic development that prioritises infinite economic growth, free trade and a global self-regulating market over any other values of society (including human survival). An alternative economic approach, capable of creating a new balance between the health of humans, animals, and the environment (by modifying their structural drivers), is the most important antidote against new spillovers and climate change. It is the humanitarian immune response we need to protect global health from future pandemics and ecological collapse.
Assuntos
COVID-19 , Animais , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Saúde Pública , Saúde GlobalRESUMO
BACKGROUND: Floods have affected 2.3 billion people worldwide in the last 20 years, and are associated with a wide range of negative health outcomes. Climate change is projected to increase the number of people exposed to floods due to more variable precipitation and rising sea levels. Vulnerability to floods is highly dependent on economic wellbeing and other societal factors. Therefore, this systematic review synthesizes the evidence on health effects of flood exposure among the population of sub-Saharan Africa. METHODS: We systematically searched two databases, Web of Science and PubMed, to find published articles. We included studies that (1) were published in English from 2010 onwards, (2) presented associations between flood exposure and health indicators, (3) focused on sub-Saharan Africa, and (4) relied on a controlled study design, such as cohort studies, case-control studies, cross-sectional studies, or quasi-experimental approaches with a suitable comparator, for instance individuals who were not exposed to or affected by floods or individuals prior to experiencing a flood. RESULTS: Out of 2306 screened records, ten studies met our eligibility criteria. We included studies that reported the impact of floods on water-borne diseases (n = 1), vector-borne diseases (n = 8) and zoonotic diseases (n = 1). Five of the ten studies assessed the connection between flood exposure and malaria. One of these five evaluated the impact of flood exposure on malaria co-infections. The five non-malaria studies focused on cholera, scabies, taeniasis, Rhodesian sleeping sickness, alphaviruses and flaviviruses. Nine of the ten studies reported significant increases in disease susceptibility after flood exposure. CONCLUSION: The majority of included studies of the aftermath of floods pointed to an increased risk of infection with cholera, scabies, taeniasis, Rhodesian sleeping sickness, malaria, alphaviruses and flaviviruses. However, long-term health effects, specifically on mental health, non-communicable diseases and pregnancy, remain understudied. Further research is urgently needed to improve our understanding of the health risks associated with floods, which will inform public policies to prevent and reduce flood-related health risks.
Assuntos
Cólera , Escabiose , Teníase , Estudos Transversais , Inundações , Humanos , Avaliação de Resultados em Cuidados de SaúdeRESUMO
Capybaras are rodent widely distributed in South America, which inhabit lakeside areas including ecological parks and urban sites. Due to anthropological interaction, monitoring zoonotic pathogens in wildlife is essential for One Health. We investigated faecal samples from capybaras living in an urban area in Rio Branco (Acre, Brazil) for the presence diarrhoeagenic E. coli. Virulence factors from shiga toxin-producing E. coli (STEC), enterohaemorrhagic E. coli (EHEC), and enteropathogenic E. coli (EPEC) were screened by PCR. We detected at least one virulence factor in 81% of the animals, being classified as STEC and EHEC pathotypes. The presence of zoonotic E. coli in capybaras is a warning due to the highly frequent anthropological interactions with wild animals in this area. Our findings highlight the importance of investigating wild animals as carriers of zoonotic E. coli, requiring further investigations into wildlife surveillance and epidemiological monitoring.
Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Animais Selvagens , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Roedores , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genéticaRESUMO
Lactococcus garvieae causes infectious diseases in animals and is considered an emerging zoonotic pathogen involved in human clinical conditions. In silico analysis of plasmid pLG50 of L. garvieae Lg-Granada, an isolate from a patient with endocarditis, revealed the presence of two gene clusters (orf46-47 and orf48-49), each one encoding a novel putative bacteriocin, i.e., garvicin AG1 (GarAG1; orf46) and garvicin AG2 (GarAG2; orf48), and their corresponding immunity proteins (orf47 and orf49). The chemically synthesised bacteriocins GarAG1 and GarAG2 presented inhibitory activity against pathogenic L. garvieae strains, with AG2 also being active against Listeria monocytogenes, Listeria ivanovii and Enterococcus faecalis. Genetic organisation, amino acid sequences and antimicrobial activities of GarAG1 and GarAG2 indicate that they belong to linear non-pediocin-like one-peptide class IId bacteriocins. Gram-positive bacteria that were sensitive to GarAG2 were also able to ferment mannose, suggesting that this bacteriocin could use the mannose phosphotransferase transport system (Man-PTS) involved in mannose uptake as a receptor in sensitive strains. Intriguingly, GarAG1 and GarAG2 were highly active against their own host, L. garvieae Lg-Granada, which could be envisaged as a new strategy to combat pathogens via their own weapons.
Assuntos
Bacteriocinas , Animais , Bacteriocinas/metabolismo , Bactérias Gram-Positivas/metabolismo , Humanos , Lactococcus/metabolismo , Manose/metabolismoRESUMO
Since the 1970s, the zoonotic disease monkeypox was reported as appearing in humans, principally in central and west Africa. However, from May 2022, escalating numbers of persons worldwide contracted it. On 23 July 2022, the World Health Organization declared this outbreak to be a public health emergency of international concern (PHEIC) and initially observed that it was "concentrated among men who have sex with men, especially those with multiple sexual partners." The international public health response to monkeypox provides a litmus test to evaluate whether lessons have been learned from experiences of other infectious diseases in recent decades. This editorial identifies evidence of progress in the following areas: the declaration of a PHEIC in relation to monkeypox; some high-income countries' responses to monkeypox; naming of the virus, its variants and the disease it causes; protection of LGBTIQ+ communities and engagement of them to curb transmission of monkeypox; and efforts to ensure access to equitable vaccines.
Assuntos
Mpox , Minorias Sexuais e de Gênero , Masculino , Humanos , Saúde Pública , Mpox/epidemiologia , Emergências , Homossexualidade MasculinaRESUMO
We report a case of autochthonous infection of the eye worm Thelazia callipaeda in a dog in the northeastern United States. Integrated morphologic identification and molecular diagnosis confirmed the species. Phylogenetic analysis suggested introduction from Europe. The zoonotic potential of this parasite warrants broader surveillance and increased awareness among physicians and veterinarians.
Assuntos
Doenças do Cão , Infecções por Spirurida , Thelazioidea , Animais , Cães , Europa (Continente) , Humanos , New England , New York , FilogeniaRESUMO
BACKGROUND: Fourteen-years after the last Rift Valley fever (RVF) virus (RVFV) outbreak, Somalia still suffers from preventable transboundary diseases. The tradition of unheated milk consumption and handling of aborted materials poses a public health risk for zoonotic diseases. Limited data are available on RVF and Brucella spp. in Somali people and their animals. Hence, this study has evaluated the occurrence of RVFV and Brucella spp. antibodies in cattle, goats and sheep sera from Afgoye and Jowhar districts of Somalia. METHODS: Serum samples from 609 ruminants (201 cattle, 203 goats and 205 sheep), were serologically screened for RVF by a commercial cELISA, and Brucella species by modified Rose Bengal Plate Test (mRBPT) and a commercial iELISA. RESULTS: Two out of 609 (0.3 %; 95 %CI: 0.04-1.2 %) ruminants were RVF seropositive, both were female cattle from both districts. Anti-Brucella spp. antibodies were detected in 64/609 (10.5 %; 95 %CI: 8.2-13.2 %) ruminants by mRBPT, which were 39/201 (19.4 %) cattle, 16/203 (7.9 %) goats and 9/205 (4.4 %) sheep. Cattle were 5.2 and 2.8 times more likely to be Brucella-seropositive than sheep (p = 0.000003) and goats (p = 0.001), respectively. When mRBPT-positive samples were tested by iELISA, 29/64 (45.3 %; 95 %CI: 32.8-58.3 %) ruminant sera were positive for Brucella spp. Only 23/39 (58.9 %) cattle sera and 6/16 (37.5 %) goat sera were positive to Brucella spp. by iELISA. CONCLUSIONS: The present study showed the serological evidence of RVF and brucellosis in ruminants from Afgoye and Jowhar districts of Somalia. Considering the negligence of the zoonotic diseases at the human-animal interface in Somali communities, a One Health approach is needed to protect public health.
Assuntos
Brucella/isolamento & purificação , Brucelose/veterinária , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Animais , Brucelose/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Feminino , Doenças das Cabras/epidemiologia , Doenças das Cabras/microbiologia , Cabras , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Somália/epidemiologia , Zoonoses/epidemiologiaRESUMO
The connection between nature conservation and human wellbeing is well known, however, the role of declining biodiversity and emerging diseases is relatively less studied. The presence of a thriving biological diversity is known to have therapeutic effects on human health. On the other hand, human economic activities have contributed to a sharp decline in species, resulting in poor ecosystem health. Several studies have shown how microorganisms have switched from animals to humans, leading to novel diseases. This review describes studies on zoonotic diseases and biodiversity, with examples from India. It is argued that conservation of biodiversity and ecosystems and changes in economic activities must be made to ward off new diseases, and why cooperation between ministries is critical to restrict the decline of biological diversity in a megadiverse country like India.
Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Índia/epidemiologia , Zoonoses/epidemiologiaRESUMO
BACKGROUND & OBJECTIVES: Issues such as emerging and re-emerging infectious diseases, antimicrobial resistance, food security, biosafety and biosecurity are associated with changes in land use, population growth, urbanization, global travel and trade and climate change. As a result, a trans-disciplinary approach among human, animal and environmental health disciplines gained support. The Indian Council of Medical Research (ICMR) and Indian Council of Agricultural Research (ICAR) decided to establish a National Institute of One Health at Nagpur, Maharashtra, India. In this context, two collaborative research projects, funded by the ICAR and ICMR were initiated to conduct the epidemiological surveillance of selected zoonotic diseases in Central India. METHODS: Disease surveillance and molecular detection employing standard techniques like enzyme linked immunosorbent assay (ELISA), immuno-fluroscent assay (IFA), standard tube agglutination test (STAT) , Rose Bengal plate test (RBPT) and polymerase chain reaction (PCR) were undertaken based on the disease to be screened. RESULTS: In animals, the seropositivities for listeriosis (7.66%) and brucellosis (11.69%) were recorded. The occurrence of tuberculosis (3.8%) and leptospirosis (6.33%) was detected by PCR. Through cross-sectional studies from suspected human population with associated risk factors for zoonotic diseases, the seropositivity of brucellosis (1.83-11%), listeriosis (1.01-10.18 %), leptospirosis (8.14-12.67%) and scrub typhus (1.78-20.34%) was recorded. The investigations on scrub typhus indicated bimodal pattern during the months of pre-monsoon and post-monsoon season with a peak in post-monsoon in human cases. Ornithonyssus bacoti mites were identified from the rodents as a vector harbouring Orientia tsutsugamushi. The bovine tuberculosis was detected in 1.43 per cent human cases employing molecular assay. INTERPRETATION & CONCLUSIONS: The data indicated the occurrence of important zoonotic diseases adversely affecting the livestock health and human wellbeing. The scientific collaboration between veterinary and medical faculties has set an example for effective implementation of One Health (OH) programme for the establishment of National Institute of OH.