Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.629
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 103(1): 515-606, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981302

RESUMO

The protonation state of soluble and membrane-associated macromolecules dictates their charge, conformation, and functional activity. In addition, protons (H+ or their equivalents) partake in numerous metabolic reactions and serve as a source of electrochemical energy to drive the transmembrane transport of both organic and inorganic substrates. Stringent regulation of the intracellular pH is therefore paramount to homeostasis. Although the regulation of the cytosolic pH has been studied extensively, our understanding of the determinants of the H+ concentration ([H+]) of intracellular organelles has developed more slowly, limited by their small size and inaccessibility. Recently, however, targeting of molecular probes to the organellar lumen together with advances in genomic, proteomic, and electrophysiological techniques have led to the identification and characterization of unique pumps, channels, and transporters responsible for the establishment and maintenance of intraorganellar pH. These developments and their implications for cellular function in health and disease are the subject of this review.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Humanos , Concentração de Íons de Hidrogênio , Sondas Moleculares , Organelas/metabolismo , Proteômica , Prótons
2.
Proc Natl Acad Sci U S A ; 121(13): e2319055121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502695

RESUMO

Elevated cancer metabolism releases lactic acid and CO2 into the under-perfused tumor microenvironment, resulting in extracellular acidosis. The surviving cancer cells must adapt to this selection pressure; thus, targeting tumor acidosis is a rational therapeutic strategy to manage tumor growth. However, none of the major approved treatments are based explicitly on disrupting acid handling, signaling, or adaptations, possibly because the distinction between acid-sensitive and acid-resistant phenotypes is not clear. Here, we report pH-related phenotypes of sixty-eight colorectal cancer (CRC) cell lines by measuring i) extracellular acidification as a readout of acid production by fermentative metabolism and ii) growth of cell biomass over a range of extracellular pH (pHe) levels as a measure of the acid sensitivity of proliferation. Based on these measurements, CRC cell lines were grouped along two dimensions as "acid-sensitive"/"acid-resistant" versus "low metabolic acid production"/"high metabolic acid production." Strikingly, acid resistance was associated with the expression of CEACAM6 and CEACAM5 genes coding for two related cell-adhesion molecules, and among pH-regulating genes, of CA12. CEACAM5/6 protein levels were strongly induced by acidity, with a further induction under hypoxia in a subset of CRC lines. Lack of CEACAM6 (but not of CEACAM5) reduced cell growth and their ability to differentiate. Finally, CEACAM6 levels were strongly increased in human colorectal cancers from stage II and III patients, compared to matched samples from adjacent normal tissues. Thus, CEACAM6 is a marker of acid-resistant clones in colorectal cancer and a potential motif for targeting therapies to acidic regions within the tumors.


Assuntos
Acidose , Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Transdução de Sinais , Proteínas Ligadas por GPI/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fenótipo , Acidose/metabolismo , Microambiente Tumoral , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Antígeno Carcinoembrionário/genética
3.
Physiol Rev ; 99(4): 2015-2113, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31507243

RESUMO

Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.


Assuntos
Equilíbrio Ácido-Base , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Conformação Proteica , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Relação Estrutura-Atividade , Distribuição Tecidual
4.
J Cell Sci ; 136(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039101

RESUMO

Finely tuned regulation of transport protein localization is vital for epithelial function. The Na+-HCO3- co-transporter NBCn1 (also known as SLC4A7) is a key contributor to epithelial pH homeostasis, yet the regulation of its subcellular localization is not understood. Here, we show that a predicted N-terminal ß-sheet and short C-terminal α-helical motif are essential for NBCn1 plasma membrane localization in epithelial cells. This localization was abolished by cell-cell contact disruption, and co-immunoprecipitation (co-IP) and proximity ligation (PLA) revealed NBCn1 interaction with E-cadherin and DLG1, linking it to adherens junctions and the Scribble complex. NBCn1 also interacted with RhoA and localized to lamellipodia and filopodia in migrating cells. Finally, analysis of native and GFP-tagged NBCn1 localization, subcellular fractionation, co-IP with Arl13B and CEP164, and PLA of NBCn1 and tubulin in mitotic spindles led to the surprising conclusion that NBCn1 additionally localizes to centrosomes and primary cilia in non-dividing, polarized epithelial cells, and to the spindle, centrosomes and midbodies during mitosis. We propose that NBCn1 traffics between lateral junctions, the leading edge and cell division machinery in Rab11 endosomes, adding new insight to the role of NBCn1 in cell cycle progression.


Assuntos
Membrana Celular , Centrossomo , Cílios , Simportadores de Sódio-Bicarbonato , Fuso Acromático , Humanos , Animais , Ratos , Membrana Celular/química , Cílios/química , Centrossomo/química , Fuso Acromático/química , Simportadores de Sódio-Bicarbonato/análise , Simportadores de Sódio-Bicarbonato/metabolismo , Ciclo Celular , AMP Cíclico/metabolismo , Polaridade Celular , Células Epiteliais/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173044

RESUMO

The lungs and kidneys are pivotal organs in the regulation of body acid-base homeostasis. In cystic fibrosis (CF), the impaired renal ability to excrete an excess amount of HCO3- into the urine leads to metabolic alkalosis [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020); F. Al-Ghimlas, M. E. Faughnan, E. Tullis, Open Respir. Med. J. 6, 59-62 (2012)]. This is caused by defective HCO3- secretion in the ß-intercalated cells of the collecting duct that requires both the cystic fibrosis transmembrane conductance regulator (CFTR) and pendrin for normal function [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020)]. We studied the ventilatory consequences of acute oral base loading in normal, pendrin knockout (KO), and CFTR KO mice. In wild-type mice, oral base loading induced a dose-dependent metabolic alkalosis, fast urinary removal of base, and a moderate base load did not perturb ventilation. In contrast, CFTR and pendrin KO mice, which are unable to rapidly excrete excess base into the urine, developed a marked and transient depression of ventilation when subjected to the same base load. Therefore, swift renal base elimination in response to an acute oral base load is a necessary physiological function to avoid ventilatory depression. The transient urinary alkalization in the postprandial state is suggested to have evolved for proactive avoidance of hypoventilation. In CF, metabolic alkalosis may contribute to the commonly reduced lung function via a suppression of ventilatory drive.


Assuntos
Alcalose/fisiopatologia , Fibrose Cística/fisiopatologia , Hipoventilação/fisiopatologia , Equilíbrio Ácido-Base/fisiologia , Alcalose/metabolismo , Animais , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Modelos Animais de Doenças , Feminino , Hipoventilação/etiologia , Hipoventilação/metabolismo , Transporte de Íons , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Eliminação Renal , Reabsorção Renal/fisiologia
6.
Proc Natl Acad Sci U S A ; 119(33): e2204638119, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939713

RESUMO

The growing demands for ammonia in agriculture and transportation fuel stimulate researchers to develop sustainable electrochemical methods to synthesize ammonia ambiently, to get past the energy-intensive Haber-Bosch process. However, the conventionally used aqueous electrolytes limit N2 solubility, leading to insufficient reactant molecules in the vicinity of the catalyst during electrochemical nitrogen reduction reaction (NRR). This hampers the yield and production rate of ammonia, irrespective of how efficient the catalyst is. Herein, we introduce an aqueous electrolyte (NaBF4), which not only acts as an N2-carrier in the medium but also works as a full-fledged "co-catalyst" along with our active material MnN4 to deliver a high yield of NH3 (328.59 µg h-1 mgcat-1) at 0.0 V versus reversible hydrogen electrode. BF3-induced charge polarization shifts the metal d-band center of the MnN4 unit close to the Fermi level, inviting N2 adsorption facilely. The Lewis acidity of the free BF3 molecules further propagates their importance in polarizing the N≡N bond of the adsorbed N2 and its first protonation. This push-pull kind of electronic interaction has been confirmed from the change in d-band center values of the MnN4 site as well as charge density distribution over our active model units, which turned out to be effective enough to lower the energy barrier of the potential determining steps of NRR. Consequently, a high production rate of NH3 (2.45 × 10-9 mol s-1 cm-2) was achieved, approaching the industrial scale where the source of NH3 was thoroughly studied and confirmed to be chiefly from the electrochemical reduction of the purged N2 gas.

7.
Am J Physiol Cell Physiol ; 326(6): C1625-C1636, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646790

RESUMO

NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.


Assuntos
Adesão Celular , Movimento Celular , Proliferação de Células , Colo , Enterócitos , Simportadores de Sódio-Bicarbonato , Humanos , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Animais , Concentração de Íons de Hidrogênio , Células CACO-2 , Colo/metabolismo , Colo/patologia , Enterócitos/metabolismo , Camundongos , Camundongos Knockout , Diferenciação Celular , Camundongos Endogâmicos C57BL
8.
Physiology (Bethesda) ; 38(5): 0, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405405

RESUMO

The sea urchin larva has been used by biologists for more than a century to study the development and evolution of animals. Surprisingly, very little information has been generated regarding the physiology of this small planktonic organism. However, in the context of anthropogenic CO2-driven ocean acidification (OA), the membrane transport physiology and energetics of this marine model organism have received considerable attention in the past decade. This has led to the discovery of new, exciting physiological systems, including a highly alkaline digestive tract and the calcifying primary mesenchyme cells that generate the larval skeleton. These physiological systems directly relate to the energetics of the organisms when challenged by OA. Here we review the latest membrane transport physiology and energetics in the sea urchin larva, we identify emerging questions, and we point to important future directions in the field of marine physiology in times of rapid climate change.


Assuntos
Ouriços-do-Mar , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva/fisiologia , Ouriços-do-Mar/fisiologia , Oceanos e Mares
9.
Pflugers Arch ; 476(4): 467-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383821

RESUMO

The cerebrospinal fluid (CSF) fills the brain ventricles and the subarachnoid space surrounding the brain and spinal cord. The fluid compartment of the brain ventricles communicates with the interstitial fluid of the brain across the ependyma. In comparison to blood, the CSF contains very little protein to buffer acid-base challenges. Nevertheless, the CSF responds efficiently to changes in systemic pH by mechanisms that are dependent on the CO2/HCO3- buffer system. This is evident from early studies showing that the CSF secretion is sensitive to inhibitors of acid/base transporters and carbonic anhydrase. The CSF is primarily generated by the choroid plexus, which is a well-vascularized structure arising from the pial lining of the brain ventricles. The epithelial cells of the choroid plexus host a range of acid/base transporters, many of which participate in CSF secretion and most likely contribute to the transport of acid/base equivalents into the ventricles. This review describes the current understanding of the molecular mechanisms in choroid plexus acid/base regulation and the possible role in CSF pH regulation.


Assuntos
Encéfalo , Plexo Corióideo , Plexo Corióideo/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Medula Espinal , Concentração de Íons de Hidrogênio
10.
Pflugers Arch ; 476(4): 517-531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448728

RESUMO

The disposal of ammonia, the main proton buffer in the urine, is important for acid-base homeostasis. Renal ammonia excretion is the predominant contributor to renal net acid excretion, both under basal condition and in response to acidosis. New insights into the mechanisms of renal ammonia production and transport have been gained in the past decades. Ammonia is the only urinary solute known to be produced in the kidney and selectively transported through the different parts of the nephron. Both molecular forms of total ammonia, NH3 and NH4+, are transported by specific proteins. Proximal tubular ammoniagenesis and the activity of these transport processes determine the eventual fate of total ammonia produced and excreted by the kidney. In this review, we summarized the state of the art of ammonia handling by the kidney and highlighted the newest processes described in the last decade.


Assuntos
Acidose , Amônia , Humanos , Amônia/metabolismo , Equilíbrio Ácido-Base/fisiologia , Rim/metabolismo , Homeostase/fisiologia , Acidose/metabolismo
11.
Pflugers Arch ; 476(4): 689-701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332178

RESUMO

The copious metabolic acid production and -extrusion by cancer cells render poorly vascularized regions of solid tumors highly acidic. A growing list of proton - and bicarbonate transporters has been suggested to contribute to net acid extrusion from cancer cells, and/or been shown to be dysregulated and favor malignant development in various cancers. The great majority of these roles have been studied at the level of the cancer cells. However, recent advances in understanding of the cellular and physicochemical heterogeneity of solid tumors both enable and necessitate a reexamination of the regulation and roles of acid-base transporters in such malignancies. This review will briefly summarize the state-of-the-art, with a focus on the SLC9A and SLC4A families, for which most evidence is available. This is followed by a discussion of key concepts and open questions arising from recent insights and of the challenges that need to be tackled to address them. Finally, opportunities and challenges in therapeutic targeting of the acid-base transportome in cancers will be addressed.


Assuntos
Neoplasias , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Proteínas de Membrana Transportadoras , Prótons
12.
Pflugers Arch ; 476(4): 533-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110744

RESUMO

Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.


Assuntos
Rim , Néfrons , Animais , Camundongos , Humanos , Pressão Sanguínea/fisiologia , Transportadores de Sulfato , Rim/metabolismo , Néfrons/metabolismo , Cloreto de Sódio , Cloretos/metabolismo , Proteínas de Transporte de Ânions/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-39323388

RESUMO

Experimental studies have shown that V-type ATPase-driven H+ secretion is dependent on the transepithelial voltage. On this basis the "voltage hypothesis" of urinary acidification by the collecting duct was derived. Accordingly, it has been supposed that the lumen-negative potential created by the reabsorption of Na+ via the epithelial sodium channel (ENaC) enhances electrogenic H+ secretion via the V-type H+-ATPase. This concept continues to be widely used to explain acid/base disorders. Importantly, however, a solid proof-of-principle for the voltage hypothesis in physiologically relevant situations has not been reached. Rather, it has been challenged by recent in vivo functional studies. In this review we outline the arguments and experimental observations explaining why voltage-coupled H+ secretion in the collecting duct often appears poorly applicable to rationalize for changes of H+ secretion as a function of more or less ENaC function in the collecting duct.

14.
J Comput Chem ; 45(18): 1552-1561, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38500409

RESUMO

Investigation of Lewis acid-base interactions has been conducted by ab initio calculations and machine learning (ML) models. This study aims to resolve two critical tasks that have not been quantitatively investigated. First, ML models developed from density functional theory (DFT) calculations predict experimental BF3 affinity with Pearson correlation coefficients around 0.9 and mean absolute errors around 10 kJ mol-1. The ML models are trained by DFT-calculated BF3 affinity of more than 3000 adducts, with input features readily obtained by rdkit. Second, the ML models have the capability of predicting the relative strength of Lewis base binding atoms in Lewis polybases, which is either an extremely challenging task to conduct experimentally or a computationally expensive task for ab initio methods. The study demonstrates and solidifies the potential of combining DFT calculations and ML models to predict experimental properties, especially those that are scarce and impractical to empirically acquire.

15.
Small ; : e2402798, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004884

RESUMO

The properties of single molecules and molecular aggregates can differ dramatically, leading to a long-standing interest in mesoscale aggregation processes. Herein, a series of acid-base molecular complexes is developed by using a tetraphenylethylene-backboned fluorophore, and investigated the photophysical properties and photochemical activities at different aggregation length scales. This fluorophore, with two basic diethylamine groups and two acidic tetrazole groups, exhibits sparse solubility due to multivalent interactions that cause infinite aggregation. The addition of a third acid leads to the formation of fluorophore/acid complexes with good dispersibility and colloidal stability. This assembly process can be controlled by the use of different acids and their stoichiometry, resulting in aggregates ranging in size from a few to hundreds of nanometers. A crystalline structure is obtained to illustrate the complex properties of the acid-base network. Unlike the single molecule, these complexes show a trend of size-related properties for photoluminescence efficiency and photochemical activity. As the amount of acid added increases, the size of the complexes decreases, the aggregation effect of the complexes on fluorescence emission increases, and the rates of the oxidative photocyclization and photodecomposition slow down. This work may help to understand size-controlled molecular materials at the mesoscale for functional design.

16.
Small ; 20(7): e2303300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840438

RESUMO

Combining the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) within an integrated electrolytic system may offer the advantages of enhanced kinetics of the anode, reduced energy consumption, and the production of high-purity hydrogen. Herein, it is reported the construction of Ni─MoN nanorod arrays supported on a nickel foam substrate (Ni─MoN/NF) as a bifunctional electrocatalyst for electrocatalytic hydrogen production and selective methanol oxidation to formate. Remarkably, The optimal Ni─MoN/NF catalyst displays exceptional HER performance with an overpotential of only 49 mV to attain 10 mA cm-2 in acid, and exhibits a high activity for MOR to achieve 100 mA cm-2 at 1.48 V in alkali. A hybrid acid/base electrolytic cell with Ni─MoN/NF electrode as anode and cathode is further developed for an integrated HER-MOR cell, which only requires a voltage of 0.56 V at 10 mA cm-2 , significantly lower than that of the HER-OER system (0.70 V). The density functional theory studies reveal that the incorporation of Ni effectively modulates the electronic structure of MoN, thereby resulting in enhanced catalytic activity. The unique combination of high electrocatalytic activity and excellent stability make the Ni─MoN/NF catalyst a promising candidate for practical applications in electrocatalytic hydrogen production and methanol oxidation.

17.
Am J Kidney Dis ; 83(3): 386-401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070000

RESUMO

Individuals with liver disease are susceptible to pathophysiological derangements that lead to kidney dysfunction. Patients with advanced cirrhosis and acute liver failure (ALF) are at risk of developing acute kidney injury (AKI). Hepatorenal syndrome type 1 (HRS-1, also called HRS-AKI) constitutes a form of AKI unique to the state of cirrhosis and portal hypertension. Although HRS-1 is a condition primarily characterized by marked renal vasoconstriction and kidney hypoperfusion, other pathogenic processes, such as acute tubular injury and renal vein congestion, can overlap and further complicate the course of HRS-1. ALF can lead to AKI through mechanisms that involve systemic inflammation, direct drug toxicity, or bile acid-induced tubulopathy. In addition, the growing prevalence of nonalcoholic steatohepatitis is changing the spectrum of chronic kidney disease in cirrhosis. In this installment of AJKD's Core Curriculum in Nephrology, we explore the underpinnings of how cirrhosis, ALF, acute cholestasis, and post-liver transplantation can be associated with various forms of acute, subacute, or chronic kidney diseases. We navigate through the recommended therapies for each condition, including supportive care, pharmacological interventions, kidney replacement therapy, and organ transplantation. Finally, key acid-base and electrolyte disorders associated with hepatobiliary disease are also summarized.


Assuntos
Injúria Renal Aguda , Síndrome Hepatorrenal , Falência Hepática , Humanos , Rim/patologia , Cirrose Hepática/complicações , Síndrome Hepatorrenal/etiologia , Síndrome Hepatorrenal/terapia , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Falência Hepática/complicações , Falência Hepática/patologia
18.
Chemistry ; 30(4): e202302733, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37962034

RESUMO

The possibility of using TiO2 -based compositions: individual and sulfated titania, and their composites with carbon nanotubes as catalysts for glycerol oligomerization has been displayed. The effect of modification of TiO2 with sulfur and carbon nanotubes on acid-base and catalytic characteristics in the glycerol conversion was investigated. The activation of glycerol on the catalysts has been studied using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Only the samples based on sulfated titania are active over glycerol transformation, showing up to 58.7 % conversion. This is explained by the presence of strong base sites. Glycerides up to pentaglycerides, both linear and nonlinear structure are formed by glycerol oligomerization over TiO2 -S. The addition of nanotubes to the catalyst reduces both the glycerol conversion (up to 10.5 %) and the yield of glycerides. However, the spectrum of the resulting products is significantly narrowed, increasing the selectivity for short-chain glycerides: the portion of diglycerides reaches 72 %, and triglycerides 21 %. Herewith, glycerides of a linear structure only formed.

19.
Chemistry ; 30(11): e202303004, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38189555

RESUMO

Due to the high surface area and uniform porosity of covalent organic frameworks (COFs), they exhibit superior properties in capturing and detecting even trace amounts of gases in the air. However, the COFs materials that possess dual detected functionality are still less reported. Here, an imine-based COF containing thiophene as a donor and triazine as an acceptor to form spatial-distribution-defined D-A structures was prepared. D-A system between thiophene and triazine facilitates the charge transfer process during the protonation process of the imine and the triazine units. The obtained COF exhibits simultaneous sensing ability toward both acidic and alkaline vapors with obvious colorimetric sensing functionality.

20.
Anal Biochem ; 694: 115602, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38977233

RESUMO

Modern isothermal titration calorimetry instruments give great precision, but for comparable accuracy they require chemical calibration. For the heat factor, one recommended process is HCl into the weak base TRIS. In studying this reaction with a VP-ITC and two Nano-ITCs, we have encountered some problems, most importantly a titrant volume shortfall Δv ≈ 0.3 µL, which we attribute to diffusive loss of HCl in the syringe tip. This interpretation is supported by a mathematical treatment of the diffusion problem. The effect was discovered through a variable-v protocol, which thus should be used to properly allow for it in any reaction that similarly approaches completion. We also find that the effects from carbonate contamination and from OH- from weak base hydrolysis can be more significant that previously thought. To facilitate proper weighting in the least-squares fitting of data, we have estimated data variance functions from replicate data. All three instruments have low-signal precision of σ ≈ 1 µJ; titrant volume uncertainty is a factor of ∼2 larger for the Nano-ITCs than for the VP-ITC. The final heat factors remain uncertain by more than the ∼1 % precision of the instruments and are unduly sensitive to the HCl concentration.


Assuntos
Calorimetria , Calorimetria/métodos , Calibragem , Ácido Clorídrico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA