Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Sci Technol ; 57(45): 17640-17648, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906121

RESUMO

Membrane technology provides an attractive approach for water purification but faces significant challenges in separating small molecules due to its lack of satisfactory permselectivity. In this study, a polypyrrole-based active membrane with a switchable multi-affinity that simultaneously separates small ionic and organic contaminants from water was created. Unlike conventional passive membranes, the designed membrane exhibits a good single-pass filtration efficiency (>99%, taking 1-naphthylamine and Pb2+ as examples) and high permeability (227 L/m2/h). Applying a reversible potential can release the captured substances from the membrane, thus enabling membrane regeneration and self-cleaning without the need for additives. Advanced characterizations reveal that potential switching alters the orientation of the doped amphipathic molecules with the self-alignment of the hydrophobic alkyl chains or the disordered sulfonate anions to capture the target organic molecules or ions via hydrophobic or electrostatic interactions, respectively. The designed smart membrane holds great promise for controllable molecular separation and water purification.


Assuntos
Polímeros , Purificação da Água , Polímeros/química , Pirróis , Filtração , Eletricidade , Íons
2.
Proc Natl Acad Sci U S A ; 114(43): 11291-11296, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073046

RESUMO

ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening. The enhanced nonequilibrium fluctuations are compatible with an accumulation of active proteins at highly curved membrane sites through a curvature-protein coupling mechanism that supports the emergence of collective effects of rotating ATP synthases in lipid membranes.


Assuntos
ATPases Bacterianas Próton-Translocadoras/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Trifosfato de Adenosina/biossíntese , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/genética , Membrana Celular/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microscopia de Vídeo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodamina 123/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Valinomicina/farmacologia
3.
Food Chem ; 457: 140032, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38936117

RESUMO

The aim of the presented study was to evaluate the release of the enzymatically initiated production of hexanal from double emulsion electrospun bio-active membranes at a temperature of fruit storage. Among different formulations of water-in-oil (W1/O) primary emulsions, the emulsion composed of 12% w/v Tween20 and 0.1 M NaCl in water (W1) and 6% of poly(glycerol) poly(ricinoleate) dissolved in sunflower oil (O) using W1/O ratio of 80/20 (w/w) (Tween20-NaCl/6% PGPR) was selected, for further incorporation of enzymes, based on the lowest average droplet size (391.0 ± 15.6 nm), low polydispersity index (0.255 ± 0.07), and good gravitational stability also after 14 days. Both enzymes, lipase and lipoxygenase are needed to produce hexanal (up to 58 mg/L). Additionally, double emulsions were prepared with sufficient conductivity and viscosity using different W1/O to W2 ratios for electrospinning. From the selected electrospun membrane, up to 4.5 mg/L of hexanal was released even after 92 days.

4.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903112

RESUMO

In the present work, we report that the manufacturing of new environmentally friendly and low-cost materials with electrical conductivity can be roughly and finely tuned by an external magnetic field for technical and biomedical applications. With this aim in mind, we prepared three types of membranes based on cotton fabric impregnated with bee honey, carbonyl iron microparticles (CI), and silver microparticles (SmP). In order to study the influence of the metal particles and the magnetic field on the electrical conductivity of membranes, electrical devices were made. Using the "volt-amperometric" method, it was found that the electrical conductivity of the membranes is influenced by the mass ratio (mCI: mSmP) and by the B values of the magnetic flux density. It was observed that in the absence of an external magnetic field, adding microparticles of carbonyl iron mixed with silver microparticles in mass ratios (mCI: mSmP) of 1:0, 1:0.5, and 1:1 causes the electrical conductivity of the membranes based on cotton fabrics impregnated with honey to increase 2.05, 4.62, and 7.52 times, respectively, compared with that of the membrane based on cotton fabrics impregnated with honey alone. When applying a magnetic field, the electrical conductivity of the membranes with microparticles of carbonyl iron and silver increases with increasing magnetic flux density B. We conclude that the membranes are very good candidates for the fabrication of devices to be used in biomedical applications due to the possibility of remote, magnetically induced release of the bioactive compounds from honey and silver microparticles into the area of interest during medical treatment.

5.
J Math Neurosci ; 10(1): 1, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31993756

RESUMO

Neurons are biological cells with uniquely complex dendritic morphologies that are not present in other cell types. Electrical signals in a neuron with branching dendrites can be studied by cable theory which provides a general mathematical modelling framework of spatio-temporal voltage dynamics. Typically such models need to be solved numerically unless the cell membrane is modelled either by passive or quasi-active dynamics, in which cases analytical solutions can be reduced to calculation of the Green's function describing the fundamental input-output relationship in a given morphology. Such analytically tractable models often assume individual dendritic segments to be cylinders. However, it is known that dendritic segments in many types of neurons taper, i.e. their radii decline from proximal to distal ends. Here we consider a generalised form of cable theory which takes into account both branching and tapering structures of dendritic trees. We demonstrate that analytical solutions can be found in compact algebraic forms in an arbitrary branching neuron with a class of tapering dendrites studied earlier in the context of single neuronal cables by Poznanski (Bull. Math. Biol. 53(3):457-467, 1991). We apply this extended framework to a number of simplified neuronal models and contrast their output dynamics in the presence of tapering versus cylindrical segments.

6.
Int J Neural Syst ; 26(3): 1650004, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26790484

RESUMO

This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object's evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness.


Assuntos
Análise por Conglomerados , Lógica Fuzzy , Redes Neurais de Computação , Algoritmos , Bases de Dados Factuais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA