Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256222

RESUMO

The Acyl-activating enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes the conversion of oxalate to oxalyl-CoA as the first step in the CoA-dependent pathway of oxalate catabolism. Although the role of this enzyme in oxalate catabolism has been established, its biological roles in plant growth and development are less understood. As a step toward gaining a better understanding of these biological roles, we report here a characterization of the Arabidopsis thaliana aae3 (Ataae3) seed mucilage phenotype. Ruthidium red (RR) staining of Ataae3 and wild type (WT) seeds suggested that the observed reduction in Ataae3 germination may be attributable, at least in part, to a decrease in seed mucilage accumulation. Quantitative RT-PCR analysis revealed that the expression of selected mucilage regulatory transcription factors, as well as of biosynthetic and extrusion genes, was significantly down-regulated in the Ataae3 seeds. Mucilage accumulation in seeds from an engineered oxalate-accumulating Arabidopsis and Atoxc mutant, blocked in the second step of the CoA-dependent pathway of oxalate catabolism, were found to be similar to WT. These findings suggest that elevated tissue oxalate concentrations and loss of the oxalate catabolism pathway downstream of AAE3 were not responsible for the reduced Ataae3 seed germination and mucilage phenotypes. Overall, our findings unveil the presence of regulatory interplay between AAE3 and transcriptional control of mucilage gene expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sementes , Arabidopsis/genética , Germinação/genética , Oxalatos , Fenótipo , Polissacarídeos , Sementes/genética , Proteínas de Arabidopsis/genética
2.
New Phytol ; 233(6): 2458-2470, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942034

RESUMO

Iso-branched wax compounds are well known in plants, but their biosynthetic pathways are still mostly unknown. It has been speculated that branched waxes are derived from branched-chain amino acid (BCAA) catabolism, but the evidence for this is very limited. Gas chromatography-flame ionisation detection (GC-FID) analysis revealed that mutations in two subunits of the branched-chain ketoacid dehydrogenase (BCKDH) complex, a key enzyme complex in the degradation of BCAAs, significantly decreased the amounts of branched wax compounds, indicating that BCAA degradation may be integral to the synthesis of iso-branched wax. Substrate feeding studies further revealed that the metabolic precursor of iso-branched wax compounds is isobutyric acid (iBA), which is derived from valine degradation in Arabidopsis. We also isolated a novel mutant and found that its branched wax deficient phenotype could not be rescued by iBA. Map-based cloning together with complementation analysis revealed that mutation in ACYL-ACTIVATING ENZYME 9 (AAE9) is responsible for this phenotype. Genetic and enzyme activity analysis demonstrated that AAE9 is located downstream of the BCAA degradation pathway, and that it activates iBA to isobutyryl-CoA for use on branched wax synthesis. Taken together, our study demonstrates that AAE9 is a key factor connecting BCAA catabolism with branched wax biosynthesis.


Assuntos
Aminoácidos de Cadeia Ramificada , Proteínas de Arabidopsis , Arabidopsis , Coenzima A Ligases , Ceras , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ceras/metabolismo
3.
J Biol Chem ; 295(15): 4963-4973, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086380

RESUMO

Taxol (paclitaxel) is a very widely used anticancer drug, but its commercial sources mainly consist of stripped bark or suspension cultures of members of the plant genus Taxus. Taxol accumulates as part of a complex mixture of chemical analogs, termed taxoids, which complicates its production in pure form, highlighting the need for metabolic engineering approaches for high-level Taxol production in cell cultures or microbial hosts. Here, we report on the characterization of acyl-activating enzymes (AAEs) that catalyze the formation of CoA esters of different organic acids relevant for the N-substitution of the 3-phenylisoserine side chain of taxoids. On the basis of similarities to AAE genes of known function from other organisms, we identified candidate genes in publicly available transcriptome data sets obtained with Taxus × media. We cloned 17 AAE genes, expressed them heterologously in Escherichia coli, purified the corresponding recombinant enzymes, and performed in vitro assays with 27 organic acids as potential substrates. We identified TmAAE1 and TmAAE5 as the most efficient enzymes for the activation of butyric acid (Taxol D side chain), TmAAE13 as the best candidate for generating a CoA ester of tiglic acid (Taxol B side chain), TmAAE3 and TmAAE13 as suitable for the activation of 4-methylbutyric acid (N-debenzoyl-N-(2-methylbutyryl)taxol side chain), TmAAE15 as a highly efficient candidate for hexanoic acid activation (Taxol C side chain), and TmAAE4 as suitable candidate for esterification of benzoic acid with CoA (Taxol side chain). This study lays important groundwork for metabolic engineering efforts aimed at improving Taxol production in cell cultures.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Ésteres/metabolismo , Paclitaxel/química , Paclitaxel/metabolismo , Proteínas Recombinantes/metabolismo , Taxus/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Coenzima A Ligases/química , Coenzima A Ligases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Homologia de Sequência
4.
Plant Cell Physiol ; 62(10): 1556-1571, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255851

RESUMO

Pogostone, a compound with various pharmaceutical activities, is a major constituent of the essential oil preparation called Pogostemonis Herba, which is obtained from the plant Pogostemon cablin. The biosynthesis of pogostone has not been elucidated, but 4-methylvaleryl-CoA (4MVCoA) is a likely precursor. We analyzed the distribution of pogostone in P. cablin using gas chromatography-mass spectrometry (GC-MS) and found that pogostone accumulates at high levels in the main stems and leaves of young plants. A search for the acyl-activating enzyme (AAE) that catalyzes the formation of 4MVCoA from 4-methylvaleric acid was launched, using an RNAseq-based approach to identify 31 unigenes encoding putative AAEs including the PcAAE2, the transcript profile of which shows a strong positive correlation with the distribution pattern of pogostone. The protein encoded by PcAAE2 was biochemically characterized in vitro and shown to catalyze the formation of 4MVCoA from 4-methylvaleric acid. Phylogenetic analysis showed that PcAAE2 is closely related to other AAE proteins in P. cablin and other species that are localized to the peroxisomes. However, PcAAE2 lacks a peroxisome targeting sequence 1 (PTS1) and is localized in the cytosol.


Assuntos
Coenzima A Ligases/genética , Óleos Voláteis/metabolismo , Proteínas de Plantas/genética , Pogostemon/genética , Sequência de Aminoácidos , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pogostemon/metabolismo , Alinhamento de Sequência
5.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238600

RESUMO

Acyl activating enzyme 3 (AAE3) was identified as being involved in the acetylation pathway of oxalate degradation, which regulates the responses to biotic and abiotic stresses in various higher plants. Here, we investigated the role of Glycine sojaAAE3 (GsAAE3) in Cadmium (Cd) and Aluminum (Al) tolerances. The recombinant GsAAE3 protein showed high activity toward oxalate, with a Km of 105.10 ± 12.30 µM and Vmax of 12.64 ± 0.34 µmol min-1 mg-1 protein, suggesting that it functions as an oxalyl-CoA synthetase. The expression of a GsAAE3-green fluorescent protein (GFP) fusion protein in tobacco leaves did not reveal a specific subcellular localization pattern of GsAAE3. An analysis of the GsAAE3 expression pattern revealed an increase in GsAAE3 expression in response to Cd and Al stresses, and it is mainly expressed in root tips. Furthermore, oxalate accumulation induced by Cd and Al contributes to the inhibition of root growth in wild soybean. Importantly, GsAAE3 overexpression increases Cd and Al tolerances in A. thaliana and soybean hairy roots, which is associated with a decrease in oxalate accumulation. Taken together, our data provide evidence that the GsAAE3-encoded protein plays an important role in coping with Cd and Al stresses.


Assuntos
Glycine max/genética , Ligases/genética , Oxalatos/metabolismo , Estresse Fisiológico/genética , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Alumínio/toxicidade , Cádmio/toxicidade , Ligases/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos
6.
Planta ; 246(1): 105-122, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382520

RESUMO

MAIN CONCLUSION: Loss of function mutation of rice OsACOS12 impairs lipid metabolism-mediated anther cuticle and pollen wall formation, and interferes with tapetum programmed cell death, leading to male sterility. Acyl-CoA Synthetase (ACOS) is one of the enzymes activating fatty acids for various metabolic functions in plants. Here, we show that OsACOS12, an orthologue of Arabidopsis ACOS5 in rice, is crucial for rice fertility. Similar to acos5, osaocs12 mutant had no mature pollen. But unlike acos5, osaocs12 produced defective anthers lacking cutin and Ubisch bodies on the epidermal and inner surfaces, respectively, and delayed programmed cell death (PCD)-induced tapetum degradation. Those phenotypic changes were evident at stage 10, during which OsACOS12 had its maximum expression in tapetal cells and microspores. Chemical analysis revealed that the levels of anther cuticular lipid components (wax and cutin monomers) were significantly reduced in osaocs12, while the expression levels of three known lipid biosynthetic genes were unchanged. Recombinant OsACOS12 enzyme was shown to catalyze the conversion of C18:1 fatty acid to C18:1 CoA in vitro. Phylogenetic analysis indicated that OsACOS12 is an ancient and conserved enzyme associated with the plant's colonization to earth. Collectively, our study suggests that OsACOS12 is an ancient enzyme participating in a conserved metabolic pathway for diversified biochemical functions to secure male reproduction in plants.


Assuntos
Apoptose/fisiologia , Coenzima A Ligases/metabolismo , Oryza/enzimologia , Oryza/fisiologia , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/metabolismo , Apoptose/genética , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética
7.
Toxins (Basel) ; 11(11)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752154

RESUMO

Venom injected into the host plays vital roles in facilitating successful parasitization and development for parasitoid wasps, especially those devoid of polydnavirus, and the abundant venom proteins appear to be most likely involved in parasitization success. Previously, we found the four most abundant venom proteins, including 4-coumarate:CoA ligase-like 4 (4CL4-like), in the Tetrastichus brontispae (Hymenoptera: Eulophidae) venom apparatus. In this study, we cloned, expressed T. brontispae 4CL4-like (Tb4CL4-like) in Escherichia coli, and investigated its immunosuppressive properties. The deduced amino acid sequence for Tb4CL4-like shares high identity at conserved amino acids associated with the acyl-activating enzyme (AAE) consensus motif but shows only <40% identity with the members in the AAE superfamily. mRNA abundance analysis indicated that Tb4CL4-like was transcribed mainly in the venom apparatus. Recombinant Tb4CL4-like inhibited Octodonta nipae (Coleoptera: Chrysomelidae) pupal cellular encapsulation and spreading by targeting the hemocyte cytoskeleton and reduced the hemocyte-mediated phagocytosis of E. coli in vivo. Moreover, Tb4CL4-like exhibited greater affinity to palmitic acid and linolenic acid based on the molecular docking assay and is hypothesized to be involved in fatty acid metabolism. In conclusion, our results suggest that Tb4CL4-like may be an immunity-related AAE protein that is involved in the regulation of host immunity through fatty acid metabolism-derived signaling pathways.


Assuntos
Venenos de Artrópodes/enzimologia , Enzimas/genética , Himenópteros/metabolismo , Imunossupressores/farmacologia , Animais , Clonagem Molecular , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Enzimas/isolamento & purificação , Enzimas/farmacologia , Perfilação da Expressão Gênica , Genes de Insetos , Interações Hospedeiro-Parasita , Fagocitose/efeitos dos fármacos
8.
Plant Signal Behav ; 12(1): e1276688, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28045586

RESUMO

Oxalic acid is the simplest of the dicarboxylic acids. In addition to its role in biological and metabolic processes, oxalate has been implicated in biotic and abiotic stresses. Being a strong chelator of Al, oxalate also has pivotal role in Al resistance mechanisms. However, we demonstrated that cytoplasmic oxalate accumulation is a critical event leading to root growth inhibition under Al stress. Transcriptome analysis from three crop plants identified Acyl Activating Enzyme3 (AAE3) genes to be upregulated by Al stress. These AAE3 proteins display high sequence identity to known AAE3 proteins, suggesting they are oxalyl-CoA synthetases specifically involved in oxalate degradation. However, phylogenetic analysis revealed divergence of AAE3 between monocots and dicots, pointing to the necessity for functional characterization of AAE3 proteins from other plant species with respect to Al stress.


Assuntos
Alumínio/toxicidade , Citoplasma/metabolismo , Oxalatos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase , Filogenia , Proteínas de Plantas/metabolismo , Plantas/efeitos dos fármacos , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA