Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 186(7): 1328-1336.e10, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001499

RESUMO

Stressed plants show altered phenotypes, including changes in color, smell, and shape. Yet, airborne sounds emitted by stressed plants have not been investigated before. Here we show that stressed plants emit airborne sounds that can be recorded from a distance and classified. We recorded ultrasonic sounds emitted by tomato and tobacco plants inside an acoustic chamber, and in a greenhouse, while monitoring the plant's physiological parameters. We developed machine learning models that succeeded in identifying the condition of the plants, including dehydration level and injury, based solely on the emitted sounds. These informative sounds may also be detectable by other organisms. This work opens avenues for understanding plants and their interactions with the environment and may have significant impact on agriculture.


Assuntos
Plantas , Som , Estresse Fisiológico
2.
Plant Signal Behav ; 19(1): 2310974, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38345027

RESUMO

Plants have been observed to produce short ultrasonic emissions (UEs), and current research is focusing on developing noninvasive techniques for recording and analyzing these emissions. A standardized methodology has not been established yet; in this paper we suggest a cost-effective procedure for recording, extracting, and identifying plant UEs using only a single ultrasound microphone, a laptop computer, and open-source software.


Assuntos
Acústica , Ultrassom , Análise Custo-Benefício , Plantas
3.
Sci Rep ; 14(1): 14277, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902317

RESUMO

With the development of green buildings, people pay more attention to the quality of the indoor sound environment. The air sound insulation performance of floors and exterior walls plays a key role in today's green buildings. The thermal performance of the enclosure structure's floor and exterior wall heat transfer resistance is an important factor in reducing building carbon emissions in green buildings. The aim of this paper is to study the efficiency of the acoustic and thermal insulation of a foaming system with porous carbon balls and the combination of different structural ways of construction boards and external walls. The acoustic and thermal parameters of different sound insulation and thermal insulation systems designed with porous carbon sphere foam and inserted into the floors and exterior walls are compared to highlight the optimal structure. The theoretical and experimental tests showed that to improve the sound insulation performance of the floor, a sound insulation system needs to be placed on the surface of the floor in contact with the impact object and inlaid in the vertical gap in contact with the floor and the wall. Furthermore, it has been determined that the surface of the foam particle acoustic ball with micropores has good sound absorption performance. Finally, the high-quality building thermal insulation material with low thermal conductivity in any combination with the floor slabs and the external wall structure improves the thermal insulation performance.

4.
Data Brief ; 49: 109393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37492232

RESUMO

In a Finnish-Swedish consortium project, a large amount of sound insulation tests was conducted for several intermediate floors in laboratory conditions to serve various scientific research questions. The dataset contains 30 wooden and 8 concrete constructions which are commonly used between apartments in multistorey buildings. Impact sound insulation was determined according to ISO 10140-3 standard using both tapping machine and rubber ball as standard sound sources. Airborne sound insulation was determined according to the ISO 10140-2 standard. The data are special since they have a broad frequency range: 20-5000 Hz. Data are reported in 1/3-octave frequency bands and the single-number values of ISO 717-1 and ISO 717-2 are also reported. Detailed construction drawings are available for all reported constructions. The data are highly valuable for research, education, and development purposes since all data were obtained in the same laboratory (Turku University of Applied Sciences, Turku, Finland), and all the constructions were built by the same installation team.

5.
Audiol Res ; 11(2): 254-262, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204875

RESUMO

Cartilage conduction (CC) is a form of conduction that allows a relatively loud sound to be audible when a transducer is placed on the aural cartilage. The CC transmission mechanism has gradually been elucidated, allowing for the development of CC hearing aids (CC-HAs), which are clinically available in Japan. However, CC is still not fully understood. This review summarizes previous CC reports to facilitate its understanding. Concerning the transmission mechanism, the sound pressure level in the ear canal was found to increase when the transducer was attached to the aural cartilage, compared to an unattached condition. Further, inserting an earplug and injecting water into the ear canal shifted the CC threshold, indicating the considerable influence of cartilage-air conduction on the transmission. In CC, the aural cartilage resembles the movable plate of a vibration speaker. This unique transduction mechanism is responsible for the CC characteristics. In terms of clinical applications, CC-HAs are a good option for patients with aural atresia, despite inferior signal transmission compared to bone conduction in bony atretic ears. The advantages of CC, namely comfort, stable fixation, esthetics, and non-invasiveness, facilitate its clinical use.

6.
Laryngoscope ; 124(5): 1214-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24166692

RESUMO

OBJECTIVES/HYPOTHESIS: The aim of this study was to establish the sound transmission characteristics of cartilage conduction proposed by Hosoi (2004), which is available by a vibration signal delivered to the aural cartilage from a transducer. STUDY DESIGN: Experimental study. METHOD: Eight volunteers with normal hearing participated. Thresholds at frequencies of 0.5, 1, 2, and 4 kHz for air conduction, bone, and cartilage conductions were measured with and without an earplug. The sound pressure levels on the eardrum at the threshold estimated with a Head and Torso Simulator were compared between air and cartilage conductions. The force levels calibrated with an artificial mastoid at the threshold were compared between bone and cartilage conductions. RESULTS: The difference in the estimated sound pressure levels on the eardrum at the thresholds between air and cartilage conductions were within 10 dB. In contrast, the force levels at the thresholds for cartilage conduction were remarkably lower than those for bone conduction. These findings suggested that sounds were probably transmitted via the eardrum for cartilage conduction. The threshold shifts by an earplug showed no significant difference between bone and cartilage conductions at 0.5 kHz. At 1 and 2 kHz, the threshold-shifts increased significantly in the order of bone, cartilage, and air conductions. These results suggested that airborne sound induced by the vibration of the cartilaginous portion of the ear canal played a significant role in sound transmission for cartilage conduction. CONCLUSIONS: Cartilage conduction has different characteristics from conventional air and bone conductions.


Assuntos
Ar , Limiar Auditivo/fisiologia , Condução Óssea/fisiologia , Meato Acústico Externo/fisiologia , Cartilagem da Orelha/fisiologia , Estimulação Acústica , Adulto , Feminino , Humanos , Masculino , Vibração
7.
J Rehabil Res Dev ; 51(2): 325-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933730

RESUMO

A hearing aid using cartilage conduction (CC) has been proposed as an alternative to bone conduction (BC) hearing aids. The transducer developed for this application is lightweight, requires a much smaller fixation force than a BC hearing aid, and is more convenient to use. CC can be of great benefit to patients with fibrotic aural atresia. Fibrotic tissue connected to the ossicles provides an additional pathway (termed fibrotic tissue pathway) for sound to reach the cochlea by means of CC. To address the function of fibrotic tissue pathway, BC and CC thresholds were measured in six ears with fibrotic aural atresia. The relationship between the CC thresholds and the results of computed tomography was investigated. In the ears with the presence of a fibrotic tissue pathway, the CC thresholds were lower than the BC thresholds at 0.5 and 1.0 kHz. At 2.0 kHz, no significant difference was observed between the BC and CC thresholds. The current findings suggest that sound in the low to middle frequency range is transmitted more efficiently by CC via a fibrotic tissue pathway than BC. The development of hearing devices using CC can contribute to rehabilitation, particularly in patients with fibrotic aural atresia.


Assuntos
Condução Óssea/fisiologia , Meato Acústico Externo/anormalidades , Cartilagem da Orelha/fisiopatologia , Auxiliares de Audição , Perda Auditiva Condutiva/reabilitação , Estimulação Acústica , Idoso , Limiar Auditivo , Criança , Feminino , Fibrose , Perda Auditiva Condutiva/etiologia , Perda Auditiva Condutiva/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA