Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(10): 8751-8758, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28240850

RESUMO

This study reports the H2O2 activation with different hematite nanocrystals and ascorbate ions for the herbicide alachlor degradation at pH 5. We found that hematite nanoplates (HNPs) exposed with {001} facets exhibited better catalytic performance than hematite nanocubes (HNCs) exposed with {012} facets, which was attributed to the formation of inner-sphere iron-ascorbate complexes on the hematite facets. The 3-fold undercoordination Fe cations of {001} facet favors the formation of inner-sphere iron-ascorbate complexes, while the 5-fold undercoordination Fe cations of {012} facet has stereo-hindrance effect, disfavoring the complex formation. The surface area normalized alachlor degradation rate constant (23.3 × 10-4 min-1 L m-2) of HNPs-ascorbate Fenton system was about 2.6 times that (9.1 × 10-4 min-1 L m-2) of HNCs-ascorbate counterpart. Meanwhile, the 89.0% of dechlorination and 30.0% of denitrification in the HNPs-ascorbate Fenton system were also significantly higher than those (60.9% and 13.1%) of the HNCs-ascorbate one. More importantly, the reductive dissolution of hematite by ascorbate was strongly coupled with the subsequent H2O2 decomposition by surface bound ferrous ions through surface iron cycle on the hematite facets in the hematite-ascorbate Fenton systems. This coupling could significantly inhibit the conversion of surface bound ferrous ions to dissolved ones, and thus account for the stability of hematite nanocrystals. This work sheds light on the internal relationship between iron geochemical cycling and contaminants degradation, and also inspires us to utilize surface iron cycle of widely existent hematite for environmental remediation.

2.
ACS Appl Mater Interfaces ; 9(20): 17115-17124, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28467036

RESUMO

As Fenton systems suffer from the undesirable Fe(III)/Fe(II) cycle, great efforts were made to realize the effective reduction of Fe(III) to Fe(II). The effects of hydrothermal carbon (HTC) on the Fe(III)/H2O2 Fenton-like reaction and the subsequent degradation of alachlor in water was systematically investigated, and the results indicated that HTC could enhance alachlor degradation in Fe(III)/H2O2 by promoting the Fe(III)/Fe(II) cycle via electron transfer from HTC to Fe(III) ions. The apparent alachlor degradation rate constant in the HTC-G/Fe(III)/H2O2 system (7.02 × 10-2 min-1) was about 3 times higher than that in the Fe(III)/H2O2 system (2.25 × 10-2 min-1). The electron spin resonance spectra analysis revealed that HTC consists of abundant carbon-centered persistent free radicals to act as the electron donor. Meanwhile, the hydroxyl groups on the surface of HTC also played an important role in the enhanced alachlor degradation because the decrease in the surface hydroxyl groups on HTC significantly decreased the degradation of alachlor. On the basis of these results, an Fe(III) complex with surface hydroxyl groups on HTC was proposed to favor the electron transfer from the hydroxyl groups to Fe(III), and then, the simultaneously produced Fe(II) could accelerate the catalytic decomposition of H2O2 to facilitate alachlor degradation. These findings shed new light on the possible roles of carbon materials in a natural aquatic environment and provide a new pathway for environmental pollutant control and remediation of organic contaminants by HTC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA