Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2303080120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669371

RESUMO

Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.


Assuntos
Aedes , Infecções por Alphavirus , Vírus Chikungunya , Superinfecção , Febre Amarela , Animais , Sindbis virus
2.
J Med Virol ; 96(7): e29788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982767

RESUMO

Molecular surveillance is vital for monitoring arboviruses, often employing genus-specific quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Despite this, an overlooked chikungunya fever outbreak occurred in Yunnan province, China, in 2019 and false negatives are commonly encountered during alphaviruses screening practice, highlighting the need for improved detection methods. In this study, we developed an improved alphaviruses-specific RT-qPCR capable of detecting chikungunya virus, eastern equine encephalitis virus, western equine encephalitis virus, Venezuelan equine encephalitis virus, Sindbis virus, Mayaro virus, and Ross River virus with high sensitivity and specificity. The assay identified three chikungunya virus-positive cases out of 188 sera retrospectively. Later genetic characterization suggested that imported cases from neighboring countries may be responsible for the neglected chikungunya fever outbreak of 2019 in Yunnan. Our findings underscore the value of improved alphaviruses-specific RT-qPCR in bolstering alphaviruses surveillance and informing preventive strategies.


Assuntos
Infecções por Alphavirus , Alphavirus , Vírus Chikungunya , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Humanos , Alphavirus/genética , Alphavirus/isolamento & purificação , Infecções por Alphavirus/diagnóstico , Infecções por Alphavirus/virologia , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/epidemiologia , China/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Estudos Retrospectivos , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Febre de Chikungunya/epidemiologia , Vírus da Encefalite Equina do Leste/genética , Surtos de Doenças/prevenção & controle , Sindbis virus/genética , Vírus da Encefalite Equina do Oeste/genética , Ross River virus/genética , Ross River virus/isolamento & purificação , Vírus da Encefalite Equina Venezuelana/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA Viral/genética
3.
Cell Mol Life Sci ; 80(3): 72, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36840772

RESUMO

Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.


Assuntos
Vírus Chikungunya , Poli(ADP-Ribose) Polimerases , ADP-Ribosilação , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Peptídeo Hidrolases/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507983

RESUMO

Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline-revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.


Assuntos
Infecções por Alphavirus/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Amplamente Neutralizantes/imunologia , Alphavirus/imunologia , Alphavirus/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Artrite/etiologia , Artrite/imunologia , Artrite/virologia , Anticorpos Amplamente Neutralizantes/isolamento & purificação , Anticorpos Amplamente Neutralizantes/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Reações Cruzadas , Epitopos/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Struct Biol ; 215(3): 107993, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414374

RESUMO

Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.


Assuntos
Alphavirus , Flavivirus , Vírus , Microscopia Crioeletrônica/métodos , Vírus/química , Processamento de Imagem Assistida por Computador/métodos
6.
J Virol ; 96(5): e0214921, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019719

RESUMO

Alphaviruses are enveloped viruses transmitted by arthropod vectors to vertebrate hosts. The surface of the virion contains 80 glycoprotein spikes embedded in the membrane, and these spikes mediate attachment to the host cell and initiate viral fusion. Each spike consists of a trimer of E2-E1 heterodimers. These heterodimers interact at the following two interfaces: (i) the intradimer interactions between E2 and E1 of the same heterodimer and (ii) the interdimer interactions between E2 of one heterodimer and E1 of the adjacent heterodimer (E1'). We hypothesized that the interdimer interactions are essential for trimerization of the E2-E1 heterodimers into a functional spike. In this work, we made a mutant virus (chikungunya piggyback [CPB]) where we replaced six interdimeric residues in the E2 protein of Sindbis virus (wild-type [WT] SINV) with those from the E2 protein from chikungunya virus and studied its effect in both mammalian and mosquito cell lines. CPB produced fewer infectious particles in mammalian cells than in mosquito cells, relative to WT SINV. When CPB virus was purified from mammalian cells, particles showed reduced amounts of glycoproteins relative to the capsid protein and contained defects in particle morphology compared with virus derived from mosquito cells. Using cryo-electron microscopy (cryo-EM), we determined that the spikes of CPB had a different conformation than WT SINV. Last, we identified two revertants, E2-H333N and E1-S247L, that restored particle growth and assembly to different degrees. We conclude the interdimer interface is critical for spike trimerization and is a novel target for potential antiviral drug design. IMPORTANCE Alphaviruses, which can cause disease when spread to humans by mosquitoes, have been classified as emerging pathogens, with infections occurring worldwide. The spikes on the surface of the alphavirus particle are absolutely required for the virus to enter a new host cell and initiate an infection. Using a structure-guided approach, we made a mutant virus that alters spike assembly in mammalian cells but not mosquito cells. This finding is important because it identifies a region in the spike that could be a target for antiviral drug design.


Assuntos
Infecções por Alphavirus , Alphavirus , Interações entre Hospedeiro e Microrganismos , Proteínas do Envelope Viral , Alphavirus/genética , Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Linhagem Celular , Vírus Chikungunya/genética , Microscopia Crioeletrônica , Culicidae , Glicoproteínas/química , Mamíferos , Mutação , Fenótipo , Conformação Proteica , Sindbis virus/genética , Proteínas do Envelope Viral/genética
7.
Insect Mol Biol ; 32(6): 648-657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37334906

RESUMO

Chikungunya virus (CHIKV) is an alphavirus that has re-emerged globally over the last two decades and has the potential to become endemic in the United States due to the presence of competent mosquito vectors, Aedes aegypti and Aedes albopictus. CHIK disease is characterised by fever, rash, and joint pain, and causes chronic debilitating joint pain and swelling in >50% of infected individuals. Given the disease severity caused by CHIKV and the global presence of vectors to facilitate its spread, strategies to reduce viral transmission are desperately needed; however, the human biological factors driving CHIKV transmission are poorly understood. Towards that end, we have previously shown that mosquitoes fed on alphavirus-infected obese mice have reduced infection and transmission rates compared to those fed on infected lean mice despite similar viremia in lean and obese mice. One of the many host factors that increase in obese hosts is insulin, which was previously shown to impact the infection of mosquitoes by several flaviviruses. However, insulin's impact on alphavirus infection of live mosquitoes is unknown and whether insulin influences mosquito-borne virus transmission has not been tested. To test this, we exposed A. aegypti mosquitoes to bloodmeals with CHIKV in the presence or absence of physiologically relevant levels of insulin and found that insulin significantly lowered both infection and transmission rates. RNA sequencing analysis on mosquito midguts isolated at 1-day-post-infectious-bloodmeal (dpbm) showed enrichment in genes in the Toll immune pathway in the presence of insulin, which was validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We then sought to determine if the Toll pathway plays a role in CHIKV infection of Ae. aegypti mosquitoes; therefore, we knocked down Myd88, a critical immune adaptor molecule for the Toll pathway, in live mosquitoes, and found increased CHIKV infection compared to the mock knockdown control group. Overall, these data demonstrate that insulin reduces CHIKV transmission by Ae. aegypti and activates the Toll pathway in mosquitoes, suggesting that conditions resulting in higher serum insulin concentrations may reduce alphavirus transmission. Finally, these studies suggest that strategies to activate insulin or Toll signalling in mosquitoes may be an effective control strategy against medically relevant alphaviruses.


Assuntos
Aedes , Vírus Chikungunya , Animais , Humanos , Camundongos , Vírus Chikungunya/genética , Aedes/fisiologia , Insulina , Camundongos Obesos , Artralgia
8.
Mol Ther ; 30(5): 1926-1940, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123065

RESUMO

The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolution has resulted in many variants, contributing to the striking drop in vaccine efficacy and necessitating the development of next-generation vaccines to tackle antigenic diversity. Herein we developed a multivalent Semliki Forest virus replicon-based mRNA vaccine targeting the receptor binding domain (RBD), heptad repeat domain (HR), membrane protein (M), and epitopes of non-structural protein 13 (nsp13) of SARS-CoV-2. The bacteria-mediated gene delivery offers the rapid production of large quantities of vaccine at a highly economical scale and notably allows needle-free mass vaccination. Favorable T-helper (Th) 1-dominated potent antibody and cellular immune responses were detected in the immunized mice. Further, immunization induced strong cross-protective neutralizing antibodies (NAbs) against the B.1.617.2 delta variant (clade G). We recorded a difference in induction of immunoglobulin (Ig) A response by the immunization route, with the oral route eliciting a strong mucosal secretory IgA (sIgA) response, which possibly has contributed to the enhanced protection conferred by oral immunization. Hamsters immunized orally were completely protected against viral replication in the lungs and the nasal cavity. Importantly, the vaccine protected the hamsters against SARS-CoV-2-induced pneumonia. The study provides proof-of-principle findings for the development of a feasible and efficacious oral mRNA vaccine against SARS-CoV-2 and its variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Bactérias , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Cricetinae , Humanos , Camundongos , Replicon , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Vacinas de mRNA
9.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958918

RESUMO

Infection by arthritogenic alphaviruses (aavs) can lead to reactive arthritis, which is characterized by inflammation and persistence of the virus; however, its mechanisms remain ill-characterized. Intriguingly, it has been shown that viral persistence still takes place in spite of robust innate and adaptive immune responses, characterized notably by the infiltration of macrophages (sources of TNF-alpha) as well as T/NK cells (sources of IFN-gamma) in the infected joint. Aavs are known to target mesenchymal stem cells (MSCs) in the synovium, and we herein tested the hypothesis that the infection of MSCs may promote the expression of immunoregulators to skew the anti-viral cellular immune responses. We compared the regulated expression via human synovial MSCs of pro-inflammatory mediators (e.g., IL-1ß, IL6, CCL2, miR-221-3p) to that of immunoregulators (e.g., IDO, TSG6, GAS6, miR146a-5p). We used human synovial tissue-derived MSCs which were infected with O'Nyong-Nyong alphavirus (ONNV, class II aav) alone, or combined with recombinant human TNF-α or IFN-γ, to mimic the clinical settings. We confirmed via qPCR and immunofluorescence that ONNV infected human synovial tissue-derived MSCs. Interestingly, ONNV alone did not regulate the expression of pro-inflammatory mediators. In contrast, IDO, TSG6, and GAS6 mRNA expression were increased in response to ONNV infection alone, but particularly when combined with both recombinant cytokines. ONNV infection equally decreased miR-146a-5p and miR-221-3p in the untreated cells and abrogated the stimulatory activity of the recombinant TNF-α but not the IFN-gamma. Our study argues for a major immunoregulatory phenotype of MSCs infected with ONNV which may favor virus persistence in the inflamed joint.


Assuntos
Alphavirus , Artrite Infecciosa , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Alphavirus/genética , Alphavirus/metabolismo , Imunidade , Mediadores da Inflamação , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa
10.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014321

RESUMO

The discovery and the development of safe and efficient therapeutics against arthritogenic alphaviruses (e.g., chikungunya virus) remain a continuous challenge. Alkaloids are structurally diverse and naturally occurring compounds in plants, with a wide range of biological activities including beneficial effects against prominent pathogenic viruses and inflammation. In this short review, we discuss the effects of some alkaloids of three biologically relevant structural classes (isoquinolines, indoles and quinolizidines). Based on various experimental models (viral infections and chronic diseases), we highlight the immunomodulatory effects of these alkaloids. The data established the capacity of these alkaloids to interfere in host antiviral and inflammatory responses through key components (antiviral interferon response, ROS production, inflammatory signaling pathways and pro- and anti-inflammatory cytokines production) also involved in alphavirus infection and resulting inflammation. Thus, these data may provide a convincing perspective of research for the use of alkaloids as immunomodulators against arthritogenic alphavirus infection and induced inflammation.


Assuntos
Alcaloides , Infecções por Alphavirus , Vírus Chikungunya , Quinolizidinas , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/patologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus Chikungunya/fisiologia , Humanos , Indóis/uso terapêutico , Inflamação , Isoquinolinas , Quinolizidinas/farmacologia
11.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435944

RESUMO

Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.


Assuntos
Infecções por Alphavirus , Alphavirus , Alphavirus/imunologia , Alphavirus/patogenicidade , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/virologia , Animais , Humanos , Vacinas Virais/imunologia
12.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055253

RESUMO

Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1- or both FHL1- and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication.IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMR-based structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.


Assuntos
Vírus Chikungunya/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítio Alostérico , Animais , Sítios de Ligação , Linhagem Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM/química , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/genética , Mutação , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
13.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694937

RESUMO

Venezuelan equine encephalitis virus (VEEV) is one of the important human and animal pathogens. It forms replication enzyme complexes (RCs) containing viral nonstructural proteins (nsPs) that mediate the synthesis of virus-specific RNAs. The assembly and associated functions of RC also depend on the presence of a specific set of host proteins. Our study demonstrates that the hypervariable domain (HVD) of VEEV nsP3 interacts with the members of the FXR family of cellular proteins and also binds the Src homology 3 (SH3) domain-containing proteins CD2AP and SH3KBP1. Interactions with FXR family members are mediated by the C-terminal repeating peptide of HVD. A single short, minimal motif identified in this study is sufficient for driving efficient VEEV replication in the absence of HVD interactions with other host proteins. The SH3 domain-containing proteins bind to another fragment of VEEV HVD. They can promote viral replication in the absence of FXR-HVD interactions albeit less efficiently. VEEV replication can be also switched from an FXR-dependent to a chikungunya virus-specific, G3BP-dependent mode. The described modifications of VEEV HVD have a strong impact on viral replication in vitro and pathogenesis. Their effects on viral pathogenesis depend on mouse age and the genetic background of the virus.IMPORTANCE The replication of alphaviruses is determined by specific sets of cellular proteins, which mediate the assembly of viral replication complexes. Some of these critical host factors interact with the hypervariable domain (HVD) of alphavirus nsP3. In this study, we have explored binding sites of host proteins, which are specific partners of nsP3 HVD of Venezuelan equine encephalitis virus. We also define the roles of these interactions in viral replication both in vitro and in vivo A mechanistic understanding of the binding of CD2AP, SH3KBP1, and FXR protein family members to VEEV HVD uncovers important aspects of alphavirus evolution and determines new targets for the development of alphavirus-specific drugs and directions for viral attenuation and vaccine development.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Linhagem Celular , Vírus Chikungunya/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Encefalomielite Equina Venezuelana/virologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Domínios de Homologia de src
14.
Emerg Infect Dis ; 26(12): 3061-3065, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219791

RESUMO

During 2017-2018, Barmah Forest virus was recovered from mosquitoes trapped in military training areas in Australia and from a soldier infected at 1 of these areas. Phylogenies of the nucleotide sequences of the envelope glycoprotein gene E2 and the 3' untranslated region suggest that 2 lineages are circulating in eastern Australia.


Assuntos
Alphavirus , Arbovírus , Culicidae , Militares , Alphavirus/genética , Animais , Austrália/epidemiologia , Humanos
15.
Emerg Infect Dis ; 26(6): 1182-1191, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441633

RESUMO

Alphaviruses from Africa, such as Middelburg virus (MIDV), and Sindbis virus (SINV), were detected in horses with neurologic disease in South Africa, but their host ranges remain unknown. We investigated the contribution of alphaviruses to neurologic infections and death in wildlife and domestic animals in this country. During 2010-2018, a total of 608 clinical samples from wildlife and nonequine domestic animals that had febrile, neurologic signs or unexplained deaths were tested for alphaviruses. We identified 32 (5.5%) of 608 alphavirus infections (9 SINV and 23 MIDV), mostly in neurotissue of wildlife, domestic animals, and birds. Phylogenetic analysis of the RNA-dependent RNA polymerase gene confirmed either SINV or MIDV. This study implicates MIDV and SINV as potential causes of neurologic disease in wildlife and nonequine domestic species in Africa and suggests a wide host range and pathogenic potential.


Assuntos
Animais Selvagens , Sindbis virus , Animais , Animais Domésticos , Cavalos , Filogenia , África do Sul/epidemiologia
16.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30487275

RESUMO

Alphavirus infections are characterized by global inhibition of cellular transcription and rapid induction of a cytopathic effect (CPE) in cells of vertebrate origin. Transcriptional shutoff impedes the cellular response to alphavirus replication and prevents establishment of an antiviral state. Chikungunya virus (CHIKV) is a highly pathogenic alphavirus representative, and its nonstructural protein 2 (nsP2) plays critical roles in both inhibition of transcription and CPE development. Previously, we have identified a small peptide in Sindbis virus (SINV) nsP2 (VLoop) that determined the protein's transcriptional inhibition function. It is located in the surface-exposed loop of the carboxy-terminal domain of nsP2 and exhibits high variability between members of different alphavirus serocomplexes. In this study, we found that SINV-specific mutations could not be directly applied to CHIKV. However, by using a new selection approach, we identified a variety of new VLoop variants that made CHIKV and its replicons incapable of inhibiting cellular transcription and dramatically less cytopathic. Importantly, the mutations had no negative effect on RNA and viral replication rates. In contrast to parental CHIKV, the developed VLoop mutants were unable to block induction of type I interferon. Consequently, they were cleared from interferon (IFN)-competent cells without CPE development. Alternatively, in murine cells that have defects in type I IFN production or signaling, the VLoop mutants established persistent, noncytopathic replication. The mutations in nsP2 VLoop may be used for development of new vaccine candidates against alphavirus infections and vectors for expression of heterologous proteins.IMPORTANCE Chikungunya virus is an important human pathogen which now circulates in both the Old and New Worlds. As in the case of other Old World alphaviruses, CHIKV nsP2 not only has enzymatic functions in viral RNA replication but also is a critical inhibitor of the antiviral response and one of the determinants of CHIKV pathogenesis. In this study, we have applied a new strategy to select a variety of CHIKV nsP2 mutants that no longer exhibited transcription-inhibitory functions. The designed CHIKV variants became potent type I interferon inducers and acquired a less cytopathic phenotype. Importantly, they demonstrated the same replication rates as the parental CHIKV. Mutations in the same identified peptide of nsP2 proteins derived from other Old World alphaviruses also abolished their nuclear functions. Such mutations can be further exploited for development of new attenuated alphaviruses.


Assuntos
Vírus Chikungunya/metabolismo , Proteínas não Estruturais Virais/genética , Animais , Antivirais , Linhagem Celular , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Efeito Citopatogênico Viral/genética , Vírus de DNA/genética , Humanos , Interferon Tipo I/genética , Camundongos , Mutação , Células NIH 3T3 , RNA Viral/metabolismo , Replicon , Transdução de Sinais , Sindbis virus/genética , Sindbis virus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
17.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232189

RESUMO

Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.


Assuntos
Infecções por Alphavirus/patologia , Cisteína Endopeptidases/metabolismo , Efeito Citopatogênico Viral , Biossíntese de Proteínas , Sindbis virus/fisiologia , Transcrição Gênica , Proteínas não Estruturais Virais/metabolismo , Infecções por Alphavirus/genética , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Cisteína Endopeptidases/genética , Genoma Viral , Camundongos , Células NIH 3T3 , Proteínas não Estruturais Virais/genética , Vírion , Replicação Viral
18.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167335

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a representative member of the New World alphaviruses. It is transmitted by mosquito vectors and causes highly debilitating disease in humans, equids, and other vertebrate hosts. Despite a continuous public health threat, very few compounds with anti-VEEV activity in cell culture and in mouse models have been identified to date, and rapid development of virus resistance to some of them has been recorded. In this study, we investigated the possibility of using a modified nucleoside analog, ß-d-N4-hydroxycytidine (NHC), as an anti-VEEV agent and defined the mechanism of its anti-VEEV activity. The results demonstrate that NHC is a very potent antiviral agent. It affects both the release of genome RNA-containing VEE virions and their infectivity. Both of these antiviral activities are determined by the NHC-induced accumulation of mutations in virus-specific RNAs. The antiviral effect is most prominent when NHC is applied early in the infectious process, during the amplification of negative- and positive-strand RNAs in infected cells. Most importantly, only a low-level resistance of VEEV to NHC can be developed, and it requires acquisition and cooperative function of more than one mutation in nsP4. These adaptive mutations are closely located in the same segment of nsP4. Our data suggest that NHC is more potent than ribavirin as an anti-VEEV agent and likely can be used to treat other alphavirus infections.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) can cause widespread epidemics among humans and domestic animals. VEEV infections result in severe meningoencephalitis and long-term sequelae. No approved therapeutics exist for treatment of VEEV infections. Our study demonstrates that ß-d-N4-hydroxycytidine (NHC) is a very potent anti-VEEV compound, with the 50% effective concentration being below 1 µM. The mechanism of NHC antiviral activity is based on induction of high mutation rates in the viral genome. Accordingly, NHC treatment affects both the rates of particle release and the particle infectivity. Most importantly, in contrast to most of the anti-alphavirus drugs that are under development, resistance of VEEV to NHC develops very inefficiently. Even low levels of resistance require acquisition of multiple mutations in the gene of the VEEV-specific RNA-dependent RNA polymerase nsP4.


Assuntos
Alphavirus/patogenicidade , Antivirais/farmacologia , Citidina/análogos & derivados , Mutação , Alphavirus/efeitos dos fármacos , Alphavirus/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Citidina/farmacologia , Genoma Viral/efeitos dos fármacos , Humanos , Ribavirina/farmacologia , Células Vero , Carga Viral , Proteínas não Estruturais Virais/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-29437628

RESUMO

Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Ross River virus/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glucuronidase/genética , Glucuronidase/metabolismo , Camundongos , Ross River virus/enzimologia , Ross River virus/patogenicidade , Saponinas/uso terapêutico , Carga Viral/efeitos dos fármacos
20.
Med Vet Entomol ; 32(4): 436-442, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30006976

RESUMO

Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus present in Central and South America that causes arthralgia and febrile illness. Domestic mosquitoes Aedes aegypti (Diptera: Culicidae) and Aedes albopictus are potential vectors of MAYV that may allow for transmission to humans in urban settings. The present paper assesses susceptibility to infection, disseminated infection and transmission potential in Florida Ae. aegypti and Ae. albopictus for MAYV. Oral infection was significantly higher in Ae. albopictus (85-100%) than in Ae. aegypti (67-82%). Viral dissemination to the haemocoel in Ae. aegypti and Ae. albopictus mosquitoes was rapid and co-occurred with infection of the salivary glands. Rates of disseminated infection were generally higher in Ae. aegypti (45-85%) than in Ae. albopictus (38-76%), although the difference was significant only at 9 days after feeding on MAYV-infected blood. Both mosquito species exhibited low rates of MAYV infection in saliva expectorates. Viral titres in the bodies of mosquitoes increased in line with the number of days post-blood feeding and were higher in Ae. aegypti than in Ae. albopictus. Although Florida mosquito vectors have the potential to transmit MAYV and thus to initiate an urban cycle after having fed on higher titres of MAYV-infected blood, lower viraemia in infected humans is likely to limit transmission potential.


Assuntos
Aedes/virologia , Infecções por Alphavirus/transmissão , Alphavirus/fisiologia , Mosquitos Vetores/virologia , Aedes/classificação , Alphavirus/genética , Infecções por Alphavirus/virologia , Animais , Bovinos , Chlorocebus aethiops , Feminino , Florida , Humanos , Mosquitos Vetores/classificação , RNA Viral/química , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Saúde da População Urbana , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA