Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(4): e2350582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279592

RESUMO

Neutrophil extracellular traps (NETs) have been identified as triggers for a self-limited inflammatory reaction upon contact with nanoparticles within our bodies. This typically results in entrapping potentially harmful nano- or micro-objects following an immune burst. The demand for potent adjuvants has led to research on particulate-based adjuvants, particularly those that act via NET formation. Various particles, including hydrophobic nanoparticles, needle-like microparticles, and other natural and artificial crystals, have been shown to induce NET formation, eliciting a robust humoral and cellular immune response toward co-injected antigens. The NET formation was found to be the basis of the efficient use of alum as a vaccine adjuvant. Thus, nanoparticles with specific surface properties serve as NET-stimulating adjuvants. In this mini-review, we aim to summarize the current knowledge about the surface properties of particulate objects and the molecular pathways involved in inducing NET formation by neutrophils. Additionally, we discuss the potential use of nanoparticles for activating neutrophils in the tissues and the exploitation of such activation for enhancing vaccine adjuvants.


Assuntos
Armadilhas Extracelulares , Nanopartículas , Neutrófilos , Antígenos , Adjuvantes Imunológicos
2.
Proc Natl Acad Sci U S A ; 119(36): e2205983119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037341

RESUMO

Effective antitumor immunity in mice requires activation of the type I interferon (IFN) response pathway. IFNα and IFNß therapies have proven promising in humans, but suffer from limited efficacy and high toxicity. Intratumoral IFN retention ameliorates systemic toxicity, but given the complexity of IFN signaling, it was unclear whether long-term intratumoral retention of type I IFNs would promote or inhibit antitumor responses. To this end, we compared the efficacy of IFNα and IFNß that exhibit either brief or sustained retention after intratumoral injection in syngeneic mouse tumor models. Significant enhancement in tumor retention, mediated by anchoring these IFNs to coinjected aluminum-hydroxide (alum) particles, greatly improved both their tolerability and efficacy. The improved efficacy of alum-anchored IFNs could be attributed to sustained pleiotropic effects on tumor cells, immune cells, and nonhematopoietic cells. Alum-anchored IFNs achieved high cure rates of B16F10 tumors upon combination with either anti-PD-1 antibody or interleukin-2. Interestingly however, these alternative combination immunotherapies yielded disparate T cell phenotypes and differential resistance to tumor rechallenge, highlighting important distinctions in adaptive memory formation for combinations of type I IFNs with other immunotherapies.


Assuntos
Hidróxido de Alumínio , Imunoterapia , Interferon Tipo I , Compostos de Alúmen/química , Hidróxido de Alumínio/química , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Imunoterapia/normas , Interferon Tipo I/química , Interferon Tipo I/uso terapêutico , Interferon-alfa , Interferon beta , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos
3.
Environ Res ; 252(Pt 3): 118976, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705451

RESUMO

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.


Assuntos
Compostos de Alúmen , Indústria de Laticínios , Fosfatos , Esgotos , Adsorção , Fosfatos/química , Esgotos/química , Compostos de Alúmen/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cinética , Modelos Químicos
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34353890

RESUMO

Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , COVID-19/imunologia , COVID-19/terapia , Inibidores Enzimáticos/farmacologia , Elastase de Leucócito/antagonistas & inibidores , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , COVID-19/metabolismo , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Células Th1/imunologia , Tratamento Farmacológico da COVID-19
5.
Phytother Res ; 37(4): 1293-1308, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36751854

RESUMO

Citrus peel has long been used in traditional medicine in Asia to treat common cold, dyspepsia, cough, and phlegm. Narirutin-a flavanone-7-O-glycoside-is the major flavonoid in citrus peel, and has anti-oxidative, anti-allergic, and anti-inflammatory activities. However, the anti-inflammatory mechanism of narirutin has not been fully elucidated. This study is aimed to investigate the effects of narirutin on the Nod-like receptor protein 3 (NLRP3)-mediated inflammatory response in vitro and in vivo, and determine the underlying mechanism. THP-1 differentiated macrophages and bone marrow-derived macrophages (BMDMs) were used for in vitro experiments, while dextran sulfate sodium (DSS)-induced colitis and alum-induced peritonitis mouse models were constructed to test inflammation in vivo. Narirutin suppressed secretion of interleukin (IL)-1ß and pyroptosis in lipopolysaccharide (LPS)/ATP-stimulated macrophages. Narirutin decreased the expression of NLRP3 and IL-1ß in the LPS-priming step through inhibition of NF-κB, MAPK and PI3K /AKT signaling pathways. Narirutin inhibited NLRP3-ASC interaction to suppress NLRP3 inflammasome assembly. Furthermore, oral administration of narirutin (300 mg/kg) alleviated inflammation symptoms in mice with peritonitis and colitis. These results suggest that narirutin exerts its anti-inflammatory activity by suppressing NLRP3 inflammasome activation via inhibition of the NLRP3 inflammasome priming processes and NLRP3-ASC interaction in macrophages.


Assuntos
Colite , Flavanonas , Peritonite , Animais , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Flavanonas/farmacologia , Colite/induzido quimicamente , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Peritonite/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834109

RESUMO

Melanogenesis, the intricate process of melanin synthesis, is central to skin pigmentation and photoprotection and is regulated by various signaling pathways and transcription factors. To develop potential skin-whitening agents, we used B16F1 melanoma cells to investigate the inhibitory effects of anhydrous alum on melanogenesis and its underlying molecular mechanisms. Anhydrous alum (KAl(SO4)2) with high purity (>99%), which is generated through the heat-treatment of hydrated alum (KAl(SO4)2·12H2O) at 400 °C, potentiates a significant reduction in melanin content without cytotoxicity. Anhydrous alum downregulates the master regulator of melanogenesis, microphthalmia-associated transcription factor (MITF), which targets key genes involved in melanogenesis, thereby inhibiting α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. Phosphorylation of the cAMP response element-binding protein, which acts as a co-activator of MITF gene expression, is attenuated by anhydrous alum, resulting in compromised MITF transcription. Notably, anhydrous alum promoted extracellular signal-regulated kinase phosphorylation, leading to the impaired nuclear localization of MITF. Overall, these results demonstrated the generation and mode of action of anhydrous alum in B16F1 cells, which constitutes a promising option for cosmetic or therapeutic use.


Assuntos
Melaninas , alfa-MSH , Melaninas/metabolismo , alfa-MSH/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
7.
Molecules ; 28(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37764445

RESUMO

Wheat starch (WS) is a common adhesive material used in mounting of calligraphy and paintings. Potassium alum (PA) has indeed been used for many centuries to modify the physicochemical properties of starch. Thermal analysis revealed that the presence of PA led to an increase in the gelatinization temperature and enthalpy of the starch gels. The leached amylose and the swelling power of the starch gels exhibited a maximum at the ratio of 100:6.0 (WS:PA, w/w). The rheological properties of starch gels were consistent with changes in the swelling power of starch granules. SEM observations confirmed that the gel structure became more regular, and the holes grew larger with the addition of PA below the ratio of 100:6.0 (WS:PA, w/w). The short-range molecular order in the starch gels was enhanced by the addition of PA, confirmed by FT-IR analysis. Mechanical experiments demonstrated that the binding strength of the starch gels increased with higher PA concentrations and decreased significantly after the aging process. TGA results revealed that PA promoted the acid degradation of starch molecules. This study provides a detailed guide for the preparation of starch-based adhesive and its applications in paper conservation.

8.
J Med Virol ; 94(5): 2250-2258, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35112364

RESUMO

Waning antibodies and rapidly emerging variants are challenges for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine development. Adjusting existing immunization schedules and further boosting strategies are under consideration. Here, the immune responses induced by an alum-adjuvanted inactivated SARS-CoV-2 vaccine in mice were compared among immunization schedules with two or three doses. For the two-dose schedule, a 0-28-day schedule induced 5-fold stronger spike-specific IgG responses than a 0-14-day schedule, with only a slight elevation of spike-specific cellular immunity 14 days after the last immunization. A third homologous boost 2 or 5 months after the second dose for the 0-28-day schedule slightly strengthened humoral responses (1.3-fold for the 0-1-3-month schedule, and 1.8-fold for the 0-1-6-month schedule) 14 days after the last immunization. Additionally, a third homologous boost (especially with the 0-1-3-month schedule) induced significantly stronger cell-mediated immunity than both two-dose immunization schedules for all indexes tested, with a response similar to that induced by a one-dose heterologous boost with BNT162b2 in clinical trials, according to cellular immunity analysis (1.5-fold). These T cell responses were Th2 oriented, with good CD4+ and CD8+ memory. These results may offer clues for applying a homologous boosting strategy for alum-adjuvanted inactivated SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Compostos de Alúmen , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunidade Celular , Imunoglobulina G , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
9.
Diabetes Metab Res Rev ; 38(3): e3500, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34611978

RESUMO

AIMS: Immunomodulation with autoantigens potentially constitutes a specific and safe treatment for type 1 diabetes (T1D). Studies with GAD-alum administrated subcutaneously have shown to be safe, but its efficacy has been inconclusive. Administration of GAD-alum into the lymph nodes, aimed to optimise antigen presentation, has shown promising results in an open-label clinical trial. Herein, we compared the immune response of the individuals included in the trial with a group who received GAD-alum subcutaneously in a previous study. MATERIALS AND METHODS: Samples from T1D individuals collected 15 months after administration of either three doses 1 month apart of 4 µg GAD-alum into lymph nodes (LN, n = 12) or two doses 1 month apart of 20 µg subcutaneously (SC, n = 12) were studied. GADA, GADA subclasses, GAD65 -induced cytokines, peripheral blood mononuclear cell proliferation, and T cells markers were analysed. RESULTS: Low doses of GAD-alum into the lymph nodes induced higher GADA levels than higher doses administrated subcutaneously. Immune response in the LN group was characterised by changes in GADA subclasses, with a relative reduction of IgG1 and enhanced IgG2, IgG3, and IgG4 proportion, higher GAD65 -induced secretion of IL-5, IL-10, and TNF-α, and reduction of cell proliferation and CD8+ T cells. These changes were not observed after subcutaneous (SC) injections of GAD-alum. CONCLUSIONS: GAD-specific immune responses 15 months after lymph node injections of GAD-alum differed from the ones induced by SC administration of the same autoantigen.


Assuntos
Diabetes Mellitus Tipo 1 , Compostos de Alúmen , Linfócitos T CD8-Positivos , Glutamato Descarboxilase , Humanos , Imunidade , Leucócitos Mononucleares
10.
J Appl Microbiol ; 132(2): 1422-1434, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34487603

RESUMO

AIMS: Staphylococcus aureus is an opportunistic pathogen of humans. No commercial vaccine is available to combat S. aureus infections. In this study, we have investigated the protective immune response generated by S. aureus non-covalently associated cell wall surface protein N-acetylmuramoyl-L-alanine amidase (AM) in combination with Alum (Al) and heat-killed S. aureus (hkSA) using murine models. METHODS AND RESULTS: BALB/c mice were immunized with increasing concentrations of AM antigen or hkSA to determine their optimum concentration for vaccination. Fifty micrograms of AM and hkSA each were found to generate maximum anti-AM IgG antibody production. BALB/c mice were immunized next with 50 µg of AM, 50 µg of hKSA and 1 mg Al vaccine formulation. Vaccine efficacy was validated by challenging immunized BALB/c mice with S. aureus Newman and three clinical methicillin-resistant S. aureus strains. AM-hkSA-Al-immunized mice generated high anti-AM IgG antibody response with IgG1 and IgG2b as the predominant immunoglobulin subtypes. Increased survival (60%-90%) with decreased clinical disease symptoms was observed in the vaccinated BALB/c mice group. A significantly lower bacterial load and decreased kidney abscess formation was observed following the challenge with S. aureus in the vaccinated BALB/c mice group. Furthermore, the efficacy of AM-hkSA-Al vaccine was also validated using C57 BL/6 and Swiss albino mice. CONCLUSIONS: Using murine infection models, we have demonstrated that AM-hkSA-Al vaccine would be effective in preventing S. aureus infections. SIGNIFICANCE AND IMPACT OF STUDY: AM-hkSA-Al vaccine elicited strong immune response and may be considered for future vaccine design against S. aureus infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Vacinas Antiestafilocócicas , Vacinas , Compostos de Alúmen , Amidoidrolases , Animais , Anticorpos Antibacterianos , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus , Eficácia de Vacinas
11.
Environ Res ; 212(Pt C): 113448, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35580664

RESUMO

Alum sludge from water treatment was calcined and extracted to synthesize high quality boehmite and γ-alumina for phosphate removal. Synthesized boehmite and γ-alumina were able to remove phosphate quickly and effectively. Boehmite (hydrothermal treatment at 60 °C) showed maximum phosphate removal (adsorption) of 61 mg P/g followed by γ-alumina (50 mg P/g) and the boehmite hydrothermally treated at 120 °C (41 mg P/g). The degree of crystallinity gave more effect on phosphate adsorption of boehmite than that of γ-alumina. The lower the pH, the more phosphate adsorbed on the boehmite and γ-alumina (adsorb phosphate more than 4 times at pH 3 than at pH 11). Spectroscopic analysis (SEM-EDS and FTIR) indicates that phosphate are removed by ligand exchange, electrostatic attraction, and surface precipitation on the synthesized boehmite and γ-alumina.


Assuntos
Fósforo , Esgotos , Adsorção , Hidróxido de Alumínio , Óxido de Alumínio/química , Fosfatos , Fósforo/química
12.
Biotechnol Appl Biochem ; 69(3): 1112-1120, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036645

RESUMO

Microalgae, a group of photosynthetic microorganisms, are a promising feedstock for biodiesel production, but their biomass retrieval is a challenging task. Flocculation is a feasible method for dewatering and harvesting microalgae biomass. In the current study, the effect of alum flocculation on Chlorella vulgaris biomass retrieval has been studied. Alum structural changes with pH were led to a full factorial design to address the effect of this chemical structure changes at different pH values. It is observed that the best flocculation efficiency could be achieved in the natural pH value of C. vulgaris growth medium (8.2) with less than 0.5 g/L flocculant addition, which would lead to the flocculation efficiency of more than 90%. An ensemble architecture of neural networks successfully employed for flocculation modeling.


Assuntos
Chlorella vulgaris , Microalgas , Compostos de Alúmen , Biomassa , Floculação , Concentração de Íons de Hidrogênio
13.
J Environ Manage ; 311: 114845, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35272160

RESUMO

In this study, a combined ecological floating bed (C-EFB) with alum sludge ceramsite (ASC) was designed to improve the water purification effect of traditional ecological floating beds (T-EFBs). During the ASC preparation stage, alum sludge was shaped into a ball, air-dried, and fired under 600 °C. The physical and chemical properties of the ASC meet the requirements of Artificial Ceramsite Filter Materials for Water Treatment (CJ/T229-2008). This study investigated the increased capability of this new-type artificial substrate (ASC) on the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) from eutrophic landscape water. Compared with the T-EFB, the C-EFB owns a higher purification efficiency. The highest average efficiency of COD, NH4+-N, TN and TP removals during the four operating stages was 78.2%, 58.1%, 46.7% and 53.2%, respectively, in the C-EFB, which were all higher than those of 53.5%, 32.4%, 27.2% and 25.8%, respectively, for the T-EFB. Among them, the C-EFB showed a higher advantage in the removal of TP. The results showed that the potential benefits of utilizing ASC in seriously eutrophic bodies of water.

14.
World J Microbiol Biotechnol ; 39(1): 16, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401129

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of hospital-acquired infections worldwide, which is resistant to many antibiotics, resulting in significant mortality in societies. Vaccination is a well-known approach to preventing disease. Autolysin, a surface-associated protein in S. aureus with multiple functions, is a suitable candidate for vaccine development. As a co-adjuvant, selenium nanoparticles (SeNPs) can increase the immune system, presumably resulting in increased vaccine efficacy. The present study evaluated the immunogenicity and defense of recombinant autolysin formulated in SeNPs and Alum adjuvants against MRSA. r-Autolysin was expressed and purified by the Ni-NTA affinity chromatography. SeNPs were synthetically obtained from sodium dioxide, followed by an assessment of shape and size using SEM and DLS. Balb/c mice were injected subcutaneously with 20 mg of r-autolysin formulated in Alum and SeNps adjuvants three times with the proper control group in 2 weeks intervals. Cytokine profile and isotyping ELISA were conducted to determine the type of induced immunity. Opsonophagocytosis tests assessed the functional activity of the vaccine, and the bacterial burden from the infected tissues was determined. Results showed that mice receiving SeNps and r-Autolysin had higher levels of total IgG and isotypes (IgG1 and IgG2a) and increased cytokine levels (IFN-γ, TNF-α, IL-12, and IL-4) as compared with those only receiving autolysin and PBS as a control. More importantly, mice immunized with SeNps and r-Autolysin exhibited a decrease in mortality and bacterial burden compared to the control group. We concluded that SeNps could stimulate immune responses and can be used as an adjuvant element in vaccine formulation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Selênio , Camundongos , Animais , Selênio/farmacologia , N-Acetil-Muramil-L-Alanina Amidase , Staphylococcus aureus , Camundongos Endogâmicos BALB C , Nanopartículas/química , Imunoglobulina G , Citocinas , Imunidade
15.
Diabetes Metab Res Rev ; 37(7): e3440, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33486892

RESUMO

AIM: We aimed to study the feasibility and tolerability of a combination therapy consisting of glutamic acid decarboxylase (GAD-alum), Etanercept and vitamin D in children and adolescents with newly diagnosed with type 1 diabetes (T1D), and evaluate preservation of beta cell function. MATERIAL AND METHODS: Etanercept Diamyd Combination Regimen is an open-labelled multi-centre study pilot trial which enrolled 20 GAD antibodies positive T1D patients (7 girls and 13 boys), aged (mean ±SD): 12.4 ± 2.3 (8.3-16.1) years, with a diabetes duration of 81.4 ± 22.1 days. Baseline fasting C-peptide was 0.24 ± 0.1 (0.10-0.35) nmol/l. The patients received Day 1-450 Vitamin D (Calciferol) 2000 U/d per os, Etanercept sc Day 1-90 0.8 mg/kg once a week and GAD-alum sc injections (20 µg, Diamyd™) Day 30 and 60. They were followed for 30 months. RESULTS: No treatment related serious adverse events were observed. After 6 months 90-min stimulated C-peptide had improved in 8/20 patients and C-peptide area under the curve (AUC) after Mixed Meal Tolerance Test in 5 patients, but declined thereafter, while HbA1c and insulin requirement remained close to baseline. Administration of Etanercept did not reduce tumour necrosis factor (TNF) spontaneous secretion from peripheral blood mononuclear cells, but rather GAD65-induced TNF-α increased. Spontaneous interleukin-17a secretion increased after the administration of Etanercept, and GAD65-induced cytokines and chemokines were also enhanced following 1 month of Etanercept administration. CONCLUSIONS: Combination therapy with parallel treatment with GAD-alum, Etanercept and vitamin D in children and adolescents with type 1 diabetes was feasible and tolerable but had no beneficial effects on the autoimmune process or beta cell function.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Idoso , Compostos de Alúmen , Criança , Etanercepte/uso terapêutico , Feminino , Glutamato Descarboxilase/uso terapêutico , Humanos , Insulina/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Projetos Piloto , Vitamina D
16.
Environ Sci Technol ; 55(11): 7456-7465, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33999616

RESUMO

Most coagulation studies focus on pollutant removal or floc separation efficiency. However, to understand the mechanism of coagulation, it is necessary to explore the behavior of coagulation in terms of the interactions among the functional groups on the surface of the metal hydrolysis precipitates during the hydrolysis process. In this study, for the first time, aluminum sulfate (alum) was used to investigate such interactions over the whole process sequence of hydrolysis, coagulation, and crystallization with, and without (as a control), the presence of specific low molecular weight (LMW) (molecular weight < 1000 Da) organic compounds with different chemical bonds. It was observed that primary nanoparticles (NPs) of around 10 nm size were produced during the hydrolysis of alum. The presence of organic compounds was found to influence the coagulation performance by affecting the metal hydrolysis and the properties of the nanoparticles. At pH 7, ethylenediaminetetraacetic acid disodium salt (EDTA) delayed the time when the particles start to aggregate but increased the maximum size of the flocs, while citric acid caused the crystallization of amorphous hydrates and inhibited the coagulation performance. In contrast, glucose, benzoic acid (BEN), and tris(hydroxymethyl)aminomethane (THMAM) had no significant effect on the coagulation performance. Therefore, LMW organics can bond to the hydrolysis products of metal ions through key functional groups, such as carboxyl groups, and then affect the coagulation process. The experimental results show that the presence of LMW organics can change the surface properties and degree of crystallization of the primary NPs, thereby affecting the performance of coagulation.


Assuntos
Nanopartículas , Purificação da Água , Compostos de Alúmen , Cristalização , Floculação , Hidrólise
17.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639235

RESUMO

Nanomaterials have found extensive interest in the development of novel vaccines, as adjuvants and/or carriers in vaccination platforms. Conjugation of protein antigens at the particle surface by non-covalent adsorption is the most widely used approach in licensed particulate vaccines. Hence, it is essential to understand proteins' structural integrity at the material interface in order to develop safe-by-design nanovaccines. In this study, we utilized two model proteins, the wild-type allergen Bet v 1 and its hypoallergenic fold variant (BM4), to compare SiO2 nanoparticles with Alhydrogel® as particulate systems. A set of biophysical and functional assays including circular dichroism spectroscopy and proteolytic degradation was used to examine the antigens' structural integrity at the material interface. Conjugation of both biomolecules to the particulate systems decreased their proteolytic stability. However, we observed qualitative and quantitative differences in antigen processing concomitant with differences in their fold stability. These changes further led to an alteration in IgE epitope recognition. Here, we propose a toolbox of biophysical and functional in vitro assays for the suitability assessment of nanomaterials in the early stages of vaccine development. These tools will aid in safe-by-design innovations and allow fine-tuning the properties of nanoparticle candidates to shape a specific immune response.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Epitopos/imunologia , Ativação Linfocitária/imunologia , Nanopartículas/química , Dióxido de Silício/química , Vacinas/imunologia , Alérgenos/química , Humanos , Hidrogéis , Imunoglobulina E/imunologia , Hipersensibilidade Respiratória/imunologia , Linfócitos T/imunologia
18.
J Environ Manage ; 279: 111525, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168303

RESUMO

Alum sludge, an Al-oxyhydroxide rich waste product from water treatment practices, has the potential to be valorized as a P adsorbent material. However, several challenges currently prevent its application as an adsorbent in industrial setting, i.e. a limited P adsorption capacity due to saturation by organic matter and a fine nature resulting in percolation problems in adsorption bed setups. In this study, granulation and subsequent calcination of alum sludge were proposed to overcome these issues and to improve the P adsorption properties of alum-based adsorbent (ABA) materials. The effect of calcination temperature on the physicochemical properties of granular material was examined using X-ray diffraction, mass-spectroscopy coupled thermogravimetric analysis, Fourier-transform infrared spectrometry and specific surface area analysis, combined with density and crushing strength measurements. The ABA material obtained at 550 °C showed superior P adsorption properties and, therefore, this material was selected for further P adsorption testing and characterization (scanning electron microscopy and sieving). Batch P adsorption tests showed that this material had a maximum P adsorption capacity of 7.27 mg-P g-1. Kinetic adsorption tests determined the effect of the solid-to-liquid ratio and the granule particle size on the P removal. Finally, the performance of the ABA-550 material was tested in a pilot-scale adsorption setup, using a surface water stream (0.47 mg-P L-1) at a flow rate of 200 L h-1. During the test, the P removal efficiency always exceeded 86%, while the material maintained its structural stability. The results of this study illustrate the potential of granulated/calcined ABA materials for P adsorption, paving the way for the industrial application of this novel, sustainable P removal technology.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos de Alúmen , Concentração de Íons de Hidrogênio , Cinética , Fósforo , Esgotos
19.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572703

RESUMO

In this study, three coagulants (ferromagnetite (F), alum (A), and eggshells (E)) and their hybrids (FA, FE, and FEA) were investigated as possible cost-effective coagulants for the treatment of industrial wastewater. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to characterize the morphological and elemental compositions of the coagulants. The effects of coagulant dosage (10-60 mg/L) and settling time were investigated for the removal of turbidity, color, and total suspended solids. A jar tester (JTL6) operating at conditions of 150 rpm for 2 min (rapid mixing) and 30 rpm for 15 min (slow mixing) was employed. Results from the characterized supernatant showed about 80% removal of the contaminants. The prospects of F were proven to be the most effective as compared to the binary (FA > FE) and the ternary hybridized (FEA) coagulants. At an optimum dosage and settling time of 20 mg/L and 30 min, respectively, the treatability performance of F was clearly proven to be viable for wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água , Compostos de Alúmen/química , Floculação , Humanos , Resíduos Industriais , Cinética , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/toxicidade
20.
Environ Monit Assess ; 193(6): 370, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34057593

RESUMO

Electrocoagulation technology is being increasingly used to treat various types of wastewater over the last several years. This study aimed to investigate the industrial wastewater treatment of a fruit juice factory as an example of food processing industries in New Damietta City, Egypt, by using electrocoagulation technology. This is to solve an environmental problem, represented in the high organic load of these effluents. The electrocoagulation treatment processes were examined by using two electrodes of aluminum (Al) and two electrodes of stainless-steel (SS) and also by using Al as an anode and SS as a cathode. In addition, treatment by alum coagulation was investigated. Results showed that electrocoagulation was more effective than alum coagulation. The use of two combined electrodes of Al as an anode and SS as a cathode resulted in an 83.78% COD removal efficiency, while the use of the alum coagulant yielded 57.57%. Furthermore, total operating cost was calculated, and the amount of hydrogen gas as a subsequent energy alternative was theoretically determined in order to solve the process' power problem.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Compostos de Alúmen , Egito , Monitoramento Ambiental , Sucos de Frutas e Vegetais , Tecnologia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA