Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(4): 976-991.e19, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32702314

RESUMO

Although complex inflammatory-like alterations are observed around the amyloid plaques of Alzheimer's disease (AD), little is known about the molecular changes and cellular interactions that characterize this response. We investigate here, in an AD mouse model, the transcriptional changes occurring in tissue domains in a 100-µm diameter around amyloid plaques using spatial transcriptomics. We demonstrate early alterations in a gene co-expression network enriched for myelin and oligodendrocyte genes (OLIGs), whereas a multicellular gene co-expression network of plaque-induced genes (PIGs) involving the complement system, oxidative stress, lysosomes, and inflammation is prominent in the later phase of the disease. We confirm the majority of the observed alterations at the cellular level using in situ sequencing on mouse and human brain sections. Genome-wide spatial transcriptomics analysis provides an unprecedented approach to untangle the dysregulated cellular network in the vicinity of pathogenic hallmarks of AD and other brain diseases.


Assuntos
Doença de Alzheimer/patologia , Análise de Sequência de DNA/métodos , Transcriptoma , Doença de Alzheimer/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Estresse Oxidativo/genética
2.
Am J Hum Genet ; 111(3): 473-486, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38354736

RESUMO

Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gß5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.


Assuntos
Doença de Alzheimer , Subunidades beta da Proteína de Ligação ao GTP , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla , Emaranhados Neurofibrilares/metabolismo , Fenótipo , Genômica , Peptídeos beta-Amiloides/genética , Encéfalo/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo
3.
J Neurochem ; 168(7): 1175-1178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372595

RESUMO

Alzheimer's disease (AD) affects one in eight individuals over 65 and poses an immense societal challenge. AD pathology is characterized by the formation of beta-amyloid plaques and Tau tangles in the brain. While some disease-modifying treatments targeting beta-amyloid are emerging, the exact chain of events underlying the pathogenesis of this disease remains unclear. Brain lipids have long been implicated in AD pathology, though their role in AD pathogenesis remains not fully resolved. Significant advancements in mass spectrometry imaging (MSI) allow to detail spatial lipid regulations in biological tissues at the low um scale. In this issue, Huang et al. resolve spatial lipid patterns in human AD brain and genetic mouse models using desorption electrospray ionization (DESI)-based MSI integrated with other spatial techniques such as imaging mass cytometry of correlative protein signatures. Those spatial multiomics experiments identify plaque-associated lipid regulations that are dependent on progressing plaque pathology in both mouse models and the human brain. Of those lipid species, particularly pro-inflammatory lysophospholipids have been implicated in AD pathology through their interaction with both aggregating Aß and microglial activation through lipid sensing surface receptors. Together, this study provides further insight into how brain lipid homeostasis is linked to progressing AD pathology, and thereby highlights the potential of MSI-based spatial lipidomics as an emerging spatial biology technology for biomedical research.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Metabolismo dos Lipídeos , Lipídeos/análise , Placa Amiloide/patologia , Placa Amiloide/metabolismo
4.
Brain ; 146(3): 991-1005, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348636

RESUMO

The mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aß plaques, leading to augmented dystrophic neurites and increased Aß plaque load. Spatial proteomic profiling analysis of peri-plaque proteins revealed a microenvironment-specific signature of dysregulated disease-associated microglia protein expression and increased pathogenic molecule levels with O3 exposure. Unexpectedly, 5xFAD mice exhibited an augmented pulmonary cell and humoral immune response to O3, supporting that ongoing neuropathology may regulate the peripheral O3 response. Circulating HMGB1 was one factor upregulated in only 5xFAD mice, and peripheral HMGB1 was separately shown to regulate brain Trem2 mRNA expression. These findings demonstrate a bidirectional lung-brain axis regulating the central and peripheral AD immune response and highlight this interaction as a potential novel therapeutic target in AD.


Assuntos
Doença de Alzheimer , Proteína HMGB1 , Ozônio , Camundongos , Animais , Ozônio/toxicidade , Ozônio/metabolismo , Proteômica , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Pulmão/metabolismo , Pulmão/patologia , Placa Amiloide/patologia , Microglia/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos
5.
Nutr Neurosci ; 27(5): 438-450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37144738

RESUMO

OBJECTIVE: Alzheimer's disease is a progressive neurodegenerative disease and one of the most common causes of dementia. Despite recent advancements, there exists an unmet need for a suitable therapeutic option. This study aimed to evaluate the protective effects of the combination of resveratrol (20 mg/kg/day p.o.) and tannic acid (50 mg/kg/day p.o.) to reduce aluminium trichloride-induced Alzheimer's disease in rats. METHODS: Wistar rats weighing 150-200g were administered with aluminium chloride (100 mg/kg/day p.o.) for 90 days to induce neurodegeneration and Alzheimer's disease. Neurobehavioral changes were assessed using novel object recognition test, elevated plus maze test, and Morris water maze test. Histopathological studies were performed using H&E stain and Congo Red stains to check amyloid deposits. Further oxidative stress was measured in brain tissue. RESULTS: Aluminium trichloride treated negative control group showed cognitive impairment in the Morris water maze test, novel object recognition test, and elevated plus maze test. Further, the negative control group showed significant oxidative stress, increase amyloid deposits, and severe histological changes. Treatment with the combination of resveratrol and tannic acid showed significant attenuation in cognitive impairment. The oxidative stress markers and amyloid plaque levels were significantly attenuated with the treatment. CONCLUSION: The present study indicates the beneficial effects of resveratrol-tannic acid combination in AlCl3 induced neurotoxicity in rats.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Polifenóis , Ratos , Animais , Cloreto de Alumínio/toxicidade , Resveratrol , Doença de Alzheimer/tratamento farmacológico , Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Doenças Neurodegenerativas/tratamento farmacológico , Placa Amiloide/tratamento farmacológico , Ratos Wistar , Estresse Oxidativo , Aprendizagem em Labirinto , Modelos Animais de Doenças
6.
BMC Geriatr ; 24(1): 408, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714912

RESUMO

BACKGROUND: Abnormal amyloid ß (Aß) deposits in the brain are a hallmark of Alzheimer's disease (AD). Insufficient sleep duration and poor sleep quality are risk factors for developing AD. Sleep may play a role in Aß regulation, but the magnitude of the relationship between sleep and Aß deposition remains unclear. This systematic review examines the relationship between sleep (i.e., duration and efficiency) with Aß deposition in later-life adults. METHODS: A search of PubMed, CINAHL, Embase, and PsycINFO generated 5,005 published articles. Fifteen studies met the inclusion criteria for qualitative syntheses; thirteen studies for quantitative syntheses related to sleep duration and Aß; and nine studies for quantitative syntheses related to sleep efficiency and Aß. RESULTS: Mean ages of the samples ranged from 63 to 76 years. Studies measured Aß using cerebrospinal fluid, serum, and positron emission tomography scans with two tracers: Carbone 11-labeled Pittsburgh compound B or fluorine 18-labeled. Sleep duration was measured subjectively using interviews or questionnaires, or objectively using polysomnography or actigraphy. Study analyses accounted for demographic and lifestyle factors. Based on 13 eligible articles, our synthesis demonstrated that the average association between sleep duration and Aß was not statistically significant (Fisher's Z = -0.055, 95% CI = -0.117 ~ 0.008). We found that longer self-report sleep duration is associated with lower Aß (Fisher's Z = -0.062, 95% CI = -0.119 ~ -0.005), whereas the objectively measured sleep duration was not associated with Aß (Fisher's Z = 0.002, 95% CI = -0.108 ~ 0.113). Based on 9 eligible articles for sleep efficiency, our synthesis also demonstrated that the average association between sleep efficiency and Aß was not statistically significant (Fisher's Z = 0.048, 95% CI = -0.066 ~ 0.161). CONCLUSION: The findings from this review suggest that shorter self-reported sleep duration is associated with higher Aß levels. Given the heterogeneous nature of the sleep measures and outcomes, it is still difficult to determine the exact relationship between sleep and Aß. Future studies with larger sample sizes should focus on comprehensive sleep characteristics and use longitudinal designs to better understand the relationship between sleep and AD.


Assuntos
Peptídeos beta-Amiloides , Sono , Humanos , Peptídeos beta-Amiloides/metabolismo , Sono/fisiologia , Idoso , Qualidade do Sono , Fatores de Tempo , Cognição/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Pessoa de Meia-Idade , Duração do Sono
7.
Neuropathology ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566440

RESUMO

The hypothalamus is the region of the brain that integrates the neuroendocrine system and whole-body metabolism. Patients with Alzheimer's disease (AD) have been reported to exhibit pathological changes in the hypothalamus, such as neurofibrillary tangles (NFTs) and amyloid plaques (APs). However, few studies have investigated whether hypothalamic AD pathology is associated with clinical factors. We investigated the association between AD-related pathological changes in the hypothalamus and clinical pictures using autopsied brain samples obtained from deceased residents of a Japanese community. A total of 85 autopsied brain samples were semi-quantitatively analyzed for AD pathology, including NFTs and APs. Our histopathological studies showed that several hypothalamic nuclei, such as the tuberomammillary nucleus (TBM) and lateral hypothalamic area (LHA), are vulnerable to AD pathologies. NFTs are observed in various neuropathological states, including normal cognitive cases, whereas APs are predominantly observed in AD. Regarding the association between hypothalamic AD pathologies and clinical factors, the degree of APs in the TBM and LHA was associated with a lower body mass index while alive, after adjusting for sex and age at death. However, we found no significant association between hypothalamic AD pathology and the prevalence of hypertension, diabetes, or dyslipidemia. Our study showed that a lower BMI, which is a poor prognostic factor of AD, might be associated with hypothalamic AP pathology and highlighted new insights regarding the disruption of the brain-whole body axis in AD.

8.
EMBO J ; 38(23): e102345, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701556

RESUMO

In Alzheimer's disease, BACE1 protease initiates the amyloidogenic processing of amyloid precursor protein (APP) that eventually results in synthesis of ß-amyloid (Aß) peptide. Aß deposition in turn causes accumulation of BACE1 in plaque-associated dystrophic neurites, thereby potentiating progressive Aß deposition once initiated. Since systemic pharmacological BACE inhibition causes adverse effects in humans, it is important to identify strategies that specifically normalize overt BACE1 activity around plaques. The microtubule-associated protein tau regulates axonal transport of proteins, and tau deletion rescues Aß-induced transport deficits in vitro. In the current study, long-term in vivo two-photon microscopy and immunohistochemistry were performed in tau-deficient APPPS1 mice. Tau deletion reduced plaque-associated axonal pathology and BACE1 accumulation without affecting physiological BACE1 expression distant from plaques. Thereby, tau deletion effectively decelerated formation of new plaques and reduced plaque compactness. The data revealed that tau reinforces Aß deposition, presumably by contributing to accumulation of BACE1 in plaque-associated dystrophies. Targeting tau-dependent mechanisms could become a suitable strategy to specifically reduce overt BACE1 activity around plaques, thereby avoiding adverse effects of systemic BACE inhibition.


Assuntos
Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Regulação da Expressão Gênica , Placa Amiloide/prevenção & controle , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/etiologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia
9.
IEEE J Sel Top Quantum Electron ; 29(4 Biophotonics)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327699

RESUMO

Amyloid-Detection and imaging of amyloid-ß plaques (Aß) has been a focus in the field of neurodegeneration (ND) due to the high correlation with Parkinson's and Alzheimer's diseases. Here, a novel approach is being proposed and developed to induce and assess those diseases. Photodynamic therapy (PDT) is applied to the fruit fly Drosophila melanogaster as a model of systemic oxidative stress to induce rapid Aß accumulation. Excised brains are evaluated by Brillouin-Raman spectroscopy and microscopy with UV surface emissions (MUSE) to interrogate physical property changes due to fixation and high-dose PDT. MUSE reveals reasonable autofluorescence in the spectral range of Aß, particularly for females, with increased signal once stained. A presence of significant mechanical changes in fresh brains treated with PDT compared to healthy controls is revealed using Brillouin spectroscopy. Aß plaque presence was confirmed with confocal analysis, with female PDT flies yielding nearly four-fold the mean intensity of controls, thus marking PDT as a potential neurodegenerative disease model. MUSE may serve as a viable early screening method for Aß presence and quantification in a research setting. This reduces the time for sample preparation and drastically decreases the cost of Aß quantification.

10.
Arch Pharm (Weinheim) ; 356(11): e2300363, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37642540

RESUMO

Stroke is the most common cause of death among neurological diseases. The protective effects of Potentilla reptans L. include antioxidative, anti-inflammatory, and antiapoptotic effects. In this study, the brain protection and beta-amyloid effects of P. reptans root extract were investigated in the rat brain ischemia/reperfusion (IR) model. Forty male Wistar rats were randomly divided into five groups (n = 8), including IR, sham, and three groups receiving P. reptans with concentrations of 0.025, 0.05, and 0.1 (g/kg/b.w.), which were injected daily for 7 days. For the IR model, the common carotid artery was occluded bilaterally for 8 min. All injections were intraperitoneal (IP). The shuttle box test was used to measure passive avoidance memory. Then the brain tissue was extracted for the histological examination of neuron counts and ß-amyloid plaques using a morphometric technique, and finally, Statistical Package for the Social Sciences software was used for statistical analysis of the data. Pretreatment with P. reptans improved memory impairment. Also, by examining the tissues of the CA1, CA3, and dentate gyrus areas of the hippocampus, it was observed that the number of plaques in the groups receiving P. reptans extract was reduced compared to the IR group, especially at the concentration of 0.05 g/kg/b.w. Also, P. reptans improved the number of neurons at all concentrations, in which the concentration of 0.05 g/kg/b.w. showed more effective therapeutic results. Taken together, we found that P. reptans root extract has beneficial effects on memory impairment, neuronal loss, and ß-amyloid accumulation.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Potentilla , Ratos , Animais , Masculino , Ratos Wistar , Fármacos Neuroprotetores/farmacologia , Relação Estrutura-Atividade , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Encéfalo , Hipocampo , Isquemia/tratamento farmacológico , Isquemia/patologia , Reperfusão , Extratos Vegetais/farmacologia
11.
Alzheimers Dement ; 19(12): 5407-5417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37204338

RESUMO

INTRODUCTION: Apolipoprotein E (APOE) ε4 may interact with response to amyloid-targeting therapies. METHODS: Aggregate data from trials enrolling participants with amyloid-positive, early symptomatic Alzheimer's disease (AD) were analyzed for disease progression. RESULTS: Pooled analysis of potentially efficacious antibodies lecanemab, aducanumab, solanezumab, and donanemab shows slightly better efficacy in APOE ε4 carriers than in non-carriers. Carrier and non-carrier mean (95% confidence interval) differences from placebo using Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were -0.30 (-0.478, -0.106) and -0.20 (-0.435, 0.042) and AD Assessment Scale-Cognitive subscale (ADAS-Cog) values were -1.01 (-1.577, -0.456) and -0.80 (-1.627, 0.018), respectively. Decline in the APOE ε4 non-carrier placebo group was equal to or greater than that in carriers across multiple scales. Probability of study success increases as the representation of the carrier population increases. DISCUSSION: We hypothesize that APOE ε4 carriers have same or better response than non-carriers to amyloid-targeting therapies and similar or less disease progression with placebo in amyloid-positive trials. HIGHLIGHTS: Amyloid-targeting therapies had slightly greater efficacy in apolipoprotein E (APOE) ε4 carriers. Clinical decline is the same/slightly faster in amyloid-positive APOE ε4 non-carriers. Prevalence of non-carriers in trial populations could impact outcomes.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Amiloide , Proteínas Amiloidogênicas , Progressão da Doença
12.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069410

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, characterized by the abnormal accumulation of protein aggregates in the brain, known as neurofibrillary tangles and amyloid-ß (Aß) plaques. It is believed that an imbalance between cerebral and peripheral pools of Aß may play a relevant role in the deposition of Aß aggregates. Therefore, in this study, we aimed to evaluate the effect of the removal of Aß from blood plasma on the accumulation of amyloid plaques in the brain. We performed monthly plasma exchange with a 5% mouse albumin solution in the APP/PS1 mouse model from 3 to 7 months old. At the endpoint, total Aß levels were measured in the plasma, and soluble and insoluble brain fractions were analyzed using ELISA. Brains were also analyzed histologically for amyloid plaque burden, plaque size distributions, and gliosis. Our results showed a reduction in the levels of Aß in the plasma and insoluble brain fractions. Interestingly, histological analysis showed a reduction in thioflavin-S (ThS) and amyloid immunoreactivity in the cortex and hippocampus, accompanied by a change in the size distribution of amyloid plaques, and a reduction in Iba1-positive cells. Our results provide preclinical evidence supporting the relevance of targeting Aß in the periphery and reinforcing the potential use of plasma exchange as an alternative non-pharmacological strategy for slowing down AD pathogenesis.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Troca Plasmática , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Modelos Animais de Doenças
13.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003544

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. ß-amyloid plaque (Aß) deposition and hyperphosphorylated tau, as well as dysregulated energy metabolism in the brain, are key factors in the progression of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, which is closely correlated with the clinical symptoms of AD; therefore, understanding the role of brain iron accumulation in the major pathological aspects of AD is critical for its treatment. This review discusses the main mechanisms and recent advances in the involvement of iron in the above pathological processes, including in iron-induced oxidative stress-dependent and non-dependent directions, summarizes the hypothesis that the iron-induced dysregulation of energy metabolism may be an initiating factor for AD, based on the available evidence, and further discusses the therapeutic perspectives of targeting iron.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo
14.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834402

RESUMO

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and a major contributor to dementia. Although the cause of this condition has been identified long ago as aberrant aggregations of amyloid and tau proteins, effective therapies for it remain elusive. The complexities of drug development for AD treatment are often compounded by the impermeable blood-brain barrier and low-yield brain delivery. In addition, the use of high drug concentrations to overcome this challenge may entail side effects. To address these challenges and enhance the precision of delivery into brain regions affected by amyloid aggregation, we proposed a transferrin-conjugated nanoparticle-based drug delivery system. The transferrin-conjugated melittin-loaded L-arginine-coated iron oxide nanoparticles (Tf-MeLioNs) developed in this study successfully mitigated melittin-induced cytotoxicity and hemolysis in the cell culture system. In the 5XFAD mouse brain, Tf-MeLioNs remarkably reduced amyloid plaque accumulation, particularly in the hippocampus. This study suggested Tf-LioNs as a potential drug delivery platform and Tf-MeLioNs as a candidate for therapeutic drug targeting of amyloid plaques in AD. These findings provide a foundation for further exploration and advancement in AD therapeutics.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Meliteno/farmacologia , Transferrina/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos Transgênicos , Placa Amiloide/metabolismo , Modelos Animais de Doenças
15.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37511001

RESUMO

Amyloid-ß (Aß) is a peptide formed by 39-43 amino acids, heterogenous by the length of its C-terminus. Aß constitutes a subnanomolar monomeric component of human biological fluids; however, in sporadic variants of Alzheimer's disease (AD), it forms soluble neurotoxic oligomers and accumulates as insoluble extracellular polymeric aggregates (amyloid plaques) in the brain tissues. The plaque formation is controlled by zinc ions; therefore, abnormal interactions between the ions and Aß seem to take part in the triggering of sporadic AD. The amyloid plaques contain various Aß isoforms, among which the most common is Aß with an isoaspartate in position 7 (isoD7). The spontaneous conversion of D7 to isoD7 is associated with Aß aging. Aß molecules with isoD7 (isoD7-Aß) easily undergo zinc-dependent oligomerization, and upon administration to transgenic animals (mice, nematodes) used for AD modeling, act as zinc-dependent seeds of the pathological aggregation of Aß. The formation of zinc-bound homo- and hetero-oligomers with the participation of isoD7-Aß is based on the rigidly structured segment 11-EVHH-14, located in the Aß metal binding domain (Aß16). Some hereditary variants of AD are associated with familial mutations within the domain. Among these, the most susceptible to zinc-dependent oligomerization is Aß with Taiwan (D7H) mutation (D7H-Aß). In this study, the D7H-Aß metal binding domain (D7H-Aß16) has been used as a model to establish the molecular mechanism of zinc-induced D7H-Aß oligomerization through turbidimetry, dynamic light scattering, isothermal titration calorimetry, mass spectrometry, and computer modelling. Additionally, the modeling data showed that a molecule of D7H-Aß, as well as isoD7-Aß in combination with two Aß molecules, renders a stable zinc-induced heterotrimer. The trimers are held together by intermolecular interfaces via zinc ions, with the primary interfaces formed by 11-EVHH-14 sites of the interacting trimer subunits. In summary, the obtained results confirm the role of the 11-EVHH-14 region as a structure and function determinant for the zinc-dependent oligomerization of all known Aß species (including various chemically modified isoforms and AD-associated mutants) and point at this region as a potent target for drugs aimed to stop amyloid plaque formation in both sporadic and hereditary variants of AD.


Assuntos
Doença de Alzheimer , Humanos , Animais , Camundongos , Doença de Alzheimer/metabolismo , Zinco/metabolismo , Taiwan , Placa Amiloide , Peptídeos beta-Amiloides/metabolismo , Isoformas de Proteínas/genética , Mutação , Íons
16.
J Vasc Surg ; 75(1): 223-228, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478810

RESUMO

OBJECTIVE: We sought to determine whether extracranial carotid atherosclerotic disease (ECAD) is associated with increased key neurodegenerative pathology such as neurofibrillary tangle (NFT), beta-amyloid plaque, or cerebral amyloid angiopathy (CAA) accumulation, findings associated with Alzheimer's disease (AD) and other dementias. METHODS: Our prospective, longitudinal, clinicopathologic study, the AZSAND (Arizona study of aging and neurodegenerative disorders) and Brain and Body Donation Program, recorded the presence or absence of clinically diagnosed ECAD and performed semiquantitative density estimates of NFT, beta-amyloid plaque, and CAA at death. After adjusting for potential confounding factors determined by logistic regression analysis, histopathology density scores were evaluated in individuals with ECAD (n = 66) and those without ECAD (n = 125). RESULTS: We found that the presence of ECAD was associated with a 21% greater NFT burden at death compared with no ECAD (P = .02). Anatomically, an increased NFT burden was seen throughout the brain regions evaluated but was significant in the temporal lobe (P < .05) and entorhinal cortex (P = .02). In addition, we found that subjects who had undergone carotid endarterectomy (CEA), the surgical treatment of ECAD (n = 32), had decreased NFT densities compared with those with ECAD who had not undergone CEA (n = 66; P = .04). In contrast to NFT, ECAD was not associated with beta-amyloid plaques or CAA density. CONCLUSIONS: These findings indicate that ECAD is associated with the NFT burden in the temporal lobe and entorhinal cortex, which has clinical significance for AD and non-AD dementias and cognitive dysfunction. Further understanding of whether ECAD increases the risk of neurodegenerative brain changes is highly relevant because ECAD is a treatable disease that has not, otherwise, been evaluated for nor specifically treated as a dementia risk factor.


Assuntos
Doença de Alzheimer/epidemiologia , Doenças das Artérias Carótidas/epidemiologia , Angiopatia Amiloide Cerebral/epidemiologia , Disfunção Cognitiva/epidemiologia , Emaranhados Neurofibrilares/patologia , Placa Amiloide/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Região CA1 Hipocampal/patologia , Angiopatia Amiloide Cerebral/diagnóstico , Angiopatia Amiloide Cerebral/patologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Córtex Entorrinal/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Placa Amiloide/diagnóstico , Placa Amiloide/patologia , Estudos Prospectivos , Medição de Risco/estatística & dados numéricos , Fatores de Risco
17.
Neuropathology ; 42(6): 483-487, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35747901

RESUMO

We semiquantitatively compared the frequency and severity of cerebral amyloid angiopathy (CAA) in the cerebellum and CAA-positive occipital lobe of 60 subjects from routine autopsies. In the 60 subjects with a CAA-positive occipital lobe, cerebellar CAA was observed in 29 subjects (48.3%), and the severity of cerebellar CAA was relatively mild compared with occipital lobe CAA. Capillary CAA was observed in the occipital lobe of 12 subjects and the cerebellum of three subjects. CAA-related vasculopathies were observed in the occipital lobe of 15 subjects and the cerebellum of two subjects. The severity of CAA-related vasculopathy was mild in both of these subjects. Amyloid-ß plaques were observed in the occipital lobe of 54 subjects (90%) and the cerebellum of 16 subjects (26.7%). The severity of amyloid-ß plaques in the cerebellum was mild compared with the occipital lobe. In summary, we confirmed that cerebellar CAA is frequently observed in the cerebellum but with a lower severity than CAA in the occipital lobe.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Encéfalo/patologia , Lobo Occipital/patologia
18.
Aging Clin Exp Res ; 34(11): 2905-2909, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36031683

RESUMO

The Alzheimer's Questionnaire (AQ) is an informant-based screening tool with good diagnostic accuracy for Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). The aim of this study is to validate the AQ with AD-associated neuritic plaque (NP) and neurofibrillary tangle (NFT) pathology. Data from 205 prospectively followed autopsy cases clinically classified as AD (n = 90), aMCI (n = 42), or cognitively unimpaired (CU, n = 73) were used. Semi-quantitative measures of NP and NFT pathology were correlated with the AQ, Clinical Dementia Rating Sum of Boxes (CDR-SOB), and the Mini-Mental State Exam (MMSE). The AQ correlated significantly (p < 0.001) with NP load (r = 0.37) and NFT load (r = 0.57). The MMSE and CDR-SOB showed similar correlations with NP load (r = - 0.37, r = 0.35, respectively) and NFT load (r = - 0.58, r = 0.55, respectively). The AQ correlates well with NP and NFT pathology of AD, which provides additional confidence to clinicians using the AQ to screen for AD-related cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Testes de Estado Mental e Demência , Disfunção Cognitiva/diagnóstico , Autopsia , Inquéritos e Questionários
19.
Chem Biodivers ; 19(8): e202200265, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35762037

RESUMO

The development of new enzyme inhibitors in degenerative brain diseases has gained more attention. Enzyme inhibitors play an effective role in controlling central nervous system diseases. For this purpose, a novel series of hydrazone derivatives containing imidazolidine ring aimed against Alzheimer's disease (AD), have been designed and synthesized. The acetylcholinesterase (AChE) enzyme inhibitory activity of these compounds was investigated. The structures of the compounds were determined by IR, 1 H and 13 C-NMR and mass spectroscopic methods. Inhibition studies on the cholinesterase (ChE) enzymes and ß-amyloid plaque inhibition test of the compounds were performed. Based on the experimental results, compound 3j bearing dimethoxy substituent on the aromatic ring like donepezil exhibited the most AChE inhibitory activity with the IC50 values of 0.023±0.001 µM. Owing to obtained biological activity and molecular docking study results, it is thought that the most active compound 3j may play a role in both symptomatic and palliative treatment of AD.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614120

RESUMO

Electroceuticals refer to various forms of electronic neurostimulators used for therapy. Interdisciplinary advances in medical engineering and science have led to the development of the electroceutical approach, which involves therapeutic agents that specifically target neural circuits, to realize precision therapy for Alzheimer's disease (AD). To date, extensive studies have attempted to elucidate the disease-modifying effects of electroceuticals on areas in the brain of a patient with AD by the use of various physical stimuli, including electric, magnetic, and electromagnetic waves as well as ultrasound. Herein, we review non-invasive stimulatory systems and their effects on ß-amyloid plaques and tau tangles, which are pathological molecular markers of AD. Therefore, this review will aid in better understanding the recent technological developments, applicable methods, and therapeutic effects of electronic stimulatory systems, including transcranial direct current stimulation, 40-Hz gamma oscillations, transcranial magnetic stimulation, electromagnetic field stimulation, infrared light stimulation and ionizing radiation therapy, and focused ultrasound for AD.


Assuntos
Doença de Alzheimer , Estimulação Transcraniana por Corrente Contínua , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Proteínas tau , Placa Amiloide/patologia , Emaranhados Neurofibrilares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA